Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 50(2): 778-790, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36269204

RESUMO

PURPOSE: Recurrence is the leading cause of death in hepatocellular carcinoma (HCC) patients with curative resection. In this study, we aimed to develop a preoperative predictive model based on high-throughput radiomics features and clinical factors for prediction of long- and short-term recurrence for these patients. METHODS: A total of 270 patients with HCC who were followed up for at least 5 years after curative hepatectomy between June 2014 and December 2017 were enrolled in this retrospective study. Regions of interest were manually delineated in preoperative T2-weighted images using ITK-SNAP software on each HCC tumor slice. A total of 1197 radiomics features were extracted, and the recursive feature elimination method based on logistic regression was used for radiomics signature building. Tenfold cross-validation was applied for model development. Nomograms were constructed and assessed by calibration plot, which compares nomogram-predicated probability with observed outcome. Receiver-operating characteristic was then generated to evaluate the predictive performance of the model in the development and test cohorts. RESULTS: The 10 most recurrence-free survival-related radiomics features were selected for the radiomics signatures. A multiparametric clinical-radiomics model combining albumin and radiomics score for recurrence prediction was further established. The integrated model demonstrated good calibration and satisfactory discrimination, with the area under the curve (AUC) of 0.864, 95% CI 0.842-0.903, sensitivity of 0.889, and specificity of 0.644 in the test set. Calibration curve showed good agreement concerning 5-year recurrence risk predicted by the nomogram. In addition, the AUC of 1-, 2-, 3-, and 4-year recurrence was 0.935 (95% CI 0.836-1.000), 0.861 (95% CI 0.723-0.999), 0.878 (95% CI 0.762-0.994), and 0.878 (95% CI 0.762-0.994) in the test set, respectively. CONCLUSIONS: The clinical-radiomics model integrating radiomics features and clinical factors can improve recurrence predictions beyond predictions made using clinical factors or radiomics features alone. Our clinical-radiomics model is a valid method to predict recurrence that should improve preoperative prognostic performance and allow more individualized treatment decisions.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Hepatectomia , Nomogramas
2.
Front Oncol ; 12: 893103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600395

RESUMO

Purpose: This study examined the methodological quality of radiomics to predict the effectiveness of neoadjuvant chemotherapy in nasopharyngeal carcinoma (NPC). We performed a meta-analysis of radiomics studies evaluating the bias risk and treatment response estimation. Methods: Our study was conducted through a literature review as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We included radiomics-related papers, published prior to January 31, 2022, in our analysis to examine the effectiveness of neoadjuvant chemotherapy in NPC. The methodological quality was assessed using the radiomics quality score. The intra-class correlation coefficient (ICC) was employed to evaluate inter-reader reproducibility. The pooled area under the curve (AUC), pooled sensitivity, and pooled specificity were used to assess the ability of radiomics to predict response to neoadjuvant chemotherapy in NPC. Lastly, the Quality Assessment of Diagnostic Accuracy Studies technique was used to analyze the bias risk. Results: A total of 12 studies were eligible for our systematic review, and 6 papers were included in our meta-analysis. The radiomics quality score was set from 7 to 21 (maximum score: 36). There was satisfactory ICC (ICC = 0.987, 95% CI: 0.957-0.996). The pooled sensitivity and specificity were 0.88 (95% CI: 0.71-0.95) and 0.82 (95% CI: 0.68-0.91), respectively. The overall AUC was 0.91 (95% CI: 0.88-0.93). Conclusion: Prediction response of neoadjuvant chemotherapy in NPC using machine learning and radiomics is beneficial in improving standardization and methodological quality before applying it to clinical practice.

3.
Front Med (Lausanne) ; 8: 748144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869438

RESUMO

Objectives: To develop and validate the model for distinguishing brain abscess from cystic glioma by combining deep transfer learning (DTL) features and hand-crafted radiomics (HCR) features in conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI). Methods: This single-center retrospective analysis involved 188 patients with pathologically proven brain abscess (102) or cystic glioma (86). One thousand DTL and 105 HCR features were extracted from the T1WI and T2WI of the patients. Three feature selection methods and four classifiers, such as k-nearest neighbors (KNN), random forest classifier (RFC), logistic regression (LR), and support vector machine (SVM), for distinguishing brain abscess from cystic glioma were compared. The best feature combination and classifier were chosen according to the quantitative metrics including area under the curve (AUC), Youden Index, and accuracy. Results: In most cases, deep learning-based radiomics (DLR) features, i.e., DTL features combined with HCR features, contributed to a higher accuracy than HCR and DTL features alone for distinguishing brain abscesses from cystic gliomas. The AUC values of the model established, based on the DLR features in T2WI, were 0.86 (95% CI: 0.81, 0.91) in the training cohort and 0.85 (95% CI: 0.75, 0.95) in the test cohort, respectively. Conclusions: The model established with the DLR features can distinguish brain abscess from cystic glioma efficiently, providing a useful, inexpensive, convenient, and non-invasive method for differential diagnosis. This is the first time that conventional MRI radiomics is applied to identify these diseases. Also, the combination of HCR and DTL features can lead to get impressive performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA