Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Res Int ; 2023: 7838299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146392

RESUMO

Acne vulgaris is an inflammatory skin condition that affects virtually everyone at some point. Papules, comedones, pustules, scarring, and nodules are standard features of the disease and can have a detrimental social and psychological impact on an individual. Although allopathic acne treatments are available, they have adverse side effects, are expensive, and are prone to cause antibiotic resistance. The present study is aimed at formulating and evaluating topical gels containing Aloe vera, Allium cepa, and Eucalyptus globulus extracts as potential antiacne drugs. Six formulations containing the herbal extracts were prepared using 1% Carbopol 940 as a gelling agent. The phytochemical composition of the plant extracts was determined. The extracts and gels' minimum inhibitory concentration (MIC) was assessed using the microbroth dilution method. The physicochemical properties of the formulated gels, such as homogeneity, colour, texture, odour, grittiness, spreadability, extrudability, viscosity, pH, and drug content, were evaluated. All the plant extracts contained alkaloids, flavonoids, tannins, triterpenoids, and coumarins. The gel formulations showed varying activity against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Candida albicans, and Pseudomonas aeruginosa at various concentrations. The phytochemical components of the plant extracts are probably responsible for the antimicrobial activity of the gel formulations. The 5% Aloe vera-Allium cepa (1 : 1) combination gel formulation showed excellent activity against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans, with MICs of 12.50, 25.00, 6.25, 25.00, and 12.50 mg/mL, respectively. The gels generally had good physicochemical and antimicrobial properties and could be used as antiacne remedies.


Assuntos
Acne Vulgar , Anti-Infecciosos , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Acne Vulgar/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Testes de Sensibilidade Microbiana , Candida albicans , Géis/farmacologia , Escherichia coli
2.
ScientificWorldJournal ; 2023: 9118067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180374

RESUMO

The development of a raw material into an acceptable pharmaceutical excipient involves evaluation of the physicochemical and formulation properties of the potential raw material. Results from these evaluations may serve as a guide to subsequent use of the substance. The objective of the study was to evaluate the physicochemical and microbiological properties of the stem bark gum of Cordia millenii tree in conventional release paracetamol tablets. From the physicochemical evaluations, the gum was slightly acidic and soluble in all the aqueous-based solvents, except 0.1 N HCl in which it was sparingly soluble. All the absorptive properties of the gum indicated tablet disintegrating potential for tablet formulation. The total ash of the gum was higher than that of the international standard gum arabic. Micromeritic properties of the gum indicated the need for a flow aid to improve its flowability. There were no harmful microorganisms detected in the gum. Aerobic organisms and moulds and yeast were detected within permissible limits. Tablets formulated using six different concentrations of gum dispersions as a binder were generally soft and failed the USP T80 standard of dissolution, indicating poor binding and drug releasing properties. Quality control properties of three different batches of tablets containing varying concentrations of the dry gum as a disintegrating agent were comparable to tablets containing equal concentrations of corn starch. The in vitro drug releases were similar at all-time points of drug evaluation. The gum can therefore be considered as a good disintegrant in the formulation of conventional release tablets.


Assuntos
Cordia , Cordia/química , Árvores , Casca de Planta , Excipientes/química , Comprimidos/química , Solubilidade
3.
ScientificWorldJournal ; 2022: 9810099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401058

RESUMO

Excipients are components other than active ingredients that are added to pharmaceutical formulations. Naturally sourced excipients are gradually gaining preeminence over synthetically sourced excipients due to local availability and continuous supply. This study aimed to investigate the binding and disintegrating characteristics of gum extracted from the bark of Melia azedarach tree. The bark of Melia azedarach was harvested from Kwahu Asasraka in Ghana. The gum was extracted with ethanol (96%), and the percentage yield, phytochemical constituents, and flow characteristics were assessed. As a disintegrant, the gum was utilized to formulate granules at varying concentrations of 5% w/w and 10% w/w using starch as the standard. The gum was also utilized to prepare granules at varying concentrations of 10% w/v and 20% w/v as a binder, with tragacanth gum serving as the reference. Eight batches of tablets were produced from the granules. The formulated tablets from each batch were then subjected to quality control testing, which included uniformity of weight, friability, disintegration, hardness, drug content, and dissolution tests, respectively. Tannins, saponins, alkaloids, and glycosides were identified in the Melia azedarach gum. The gum had a percentage yield of 67.75% and also exhibited good flow properties. All tablets passed the uniformity of weight, friability, disintegration, hardness, dissolution, and drug content tests, respectively. According to the findings of the study, Melia azedarach gum can be utilized as an excipient in place of tragacanth and starch as a binder and disintegrant, respectively, in immediate-release tablets.


Assuntos
Melia azedarach , Tragacanto , Química Farmacêutica , Excipientes/química , Solubilidade , Amido , Comprimidos/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-34858510

RESUMO

Plant medicine is commonly employed to treat malaria and other infections in Ghana. However, many of these phytomedicines have not been scientifically investigated to justify their use. This study therefore sought to investigate the antimalarial property of Polyalthia longifolia leaves and to formulate suitable dosage forms for ease of administration. A four-day antiplasmodial suppressive and curative study was conducted on ethanol extract of P. longifolia leaves (PLE) using Plasmodium berghei infected albino mice. Tablet and suspension dosage forms of PLE were formulated and evaluated for quality and stability. Statistically significant (P < 0.05) parasitaemia suppression (61.25%) and cure (58.78%) were achieved at a PLE dose of 100 mg/kg, and increases in hematological indices (P < 0.001) were also observed in the PLE-treated mice as compared to the untreated group. The tablets passed the tests for uniformity of weight, friability (<1%), hardness, disintegration (<15 minutes), and in vitro dissolution (>70% release in 45 minutes). The sedimentation volume, rheology, viscosity, and pH of the formulated suspension were within the official specifications. The dosage forms showed consistency in PLE content (85-105%) and no changes in physicochemical properties over the six months period of stability study. The in vivo antimalarial activity of PLE has been established and oral dosage forms that conformed to Pharmacopoeial standards are formulated for use in the management of malaria.

5.
Scientifica (Cairo) ; 2021: 2902335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249381

RESUMO

Okra pectin has been studied as a potential excipient in tablet formulations for pharmaceutical industries. Okra is widely grown and available in Ghana and other parts of the world. The prospective use of pectin from okra genotypes grown in Ghana as tablet disintegrants has not been reported. This study aims to determine the potential and comparative disintegrating properties of pectin from five okra genotypes (Abelmoschus esculentus L.) in Ghana using uncoated immediate release paracetamol tablet formulations. The yield of the pectin from the various genotypes ranged between 6.12 and 18.84% w/w. The extracted pectins had pH ranging from slightly acidic to almost neutral (6.39-6.92). Pectin from the various genotypes exhibited good swelling indexes (˃200%), varying solubility in different solvents, and low moisture content (˂20%). Elemental analysis of the extracted pectin from the various genotypes revealed very low levels of toxic metals and micronutrients. Pectin from the various genotypes was evaluated as disintegrants within concentrations of 5-10% w/w (F1-F18). Their disintegrating properties were compared to that of maize starch BP. All the formulated batches of uncoated immediate release paracetamol tablets (F1-F18) passed the following: uniformity of weight test, uniformity of dimensions, hardness, friability (˂1%), and drug content (95-105%). Significant differences (p ≤ 0.05) were observed between the hardness of the maize starch tablets and tablets formulated from pectin of the various genotypes. Pectin from all genotypes other than PC5 exhibited good disintegrating properties (D T ˂ 15 min) and subsequently passed the dissolution profile test (≥70% release in 45 minutes). Tablets formulated with PC5 as disintegrants at all concentrations (5% w/w (F5), 7.5% w/w (F11), and 10% w/w (F17)) failed the disintegration and dissolution tests. Ultimately, pectins extracted from PC1, PC2, PC3, and PC4 can be commercially exploited as disintegrants in immediate release tablets.

6.
ScientificWorldJournal ; 2021: 6672277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531880

RESUMO

Natural polymers have become attractive to pharmaceutical researchers and manufacturers as excipients because of the advantages they possess relative to their semisynthetic and synthetic counterparts. Although pectin from some natural sources has been investigated for use in the pharmaceutical industry as excipients, pectin from okra, which is readily available and used as food in many parts of the world, has not been extensively investigated as a potential control-releasing agent in tablets. This study thus seeks to determine the drug release modifying properties of okra pectin from 6 different genotypes of okra cultivated and available in Ghana. Pectin was extracted from different genotypes of okra, physicochemical properties were characterized, and control release matrix tablets of metformin (F1-F6) were formulated using the wet granulation method with the okra pectin as the drug release modifier, respectively. The drug content, in vitro drug release, and mathematical kinetic modeling of drug release from the matrix tablets were studied. Drug release profiles of formulated matrix tablets were compared to an existing (innovator) brand of metformin sustained-release tablet on the market using the similarity and difference factors, respectively. The extracted pectin had percentage yields ranging from 6 to 20% w/w with swelling indexes and water-holding capacities between 300-500% and 9-10 mL/g, respectively, and pH within 6.20-6.90. All the formulated batches passed the drug content test (90-105%) and produced the optimal release of metformin (>80%) after 24 hours. Different batches of formulated tablets exhibited different mechanisms of drug release with batches F1, F2, F5, and F6 being similar (ƒ2 values being >50 and ƒ1 values <15) to the innovator brand. Pectin from the 6 different genotypes of okra studied has the potential for use as drug release modifiers in pharmaceutical manufacturing of control release matrix tablets and production of more affordable medicines.


Assuntos
Abelmoschus/química , Portadores de Fármacos/química , Pectinas/química , Comprimidos/química , Fenômenos Químicos , Química Farmacêutica , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Cinética , Metformina/administração & dosagem , Compostos Fitoquímicos/química , Extratos Vegetais/química , Solubilidade
7.
J Trop Med ; 2018: 1494957, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951101

RESUMO

The quality of 68 samples of 15 different essential children's medicines sold in licensed medicine outlets in the Ashanti Region, Ghana, was evaluated. Thirty-two (47.1%) of the medicines were imported, mainly from India (65.6%) and the United Kingdom (28.1%), while 36 (52.9%) were locally manufactured. The quality of the medicines was assessed using content of active pharmaceutical ingredient (API), pH, and microbial limit tests, and the results were compared with pharmacopoeial standards. Twenty-six (38.2%) of the samples studied passed the official content of API test while 42 (61.8%) failed. Forty-nine (72.1%) of the samples were compliant with official specifications for pH while 19 (27.9%) were noncompliant. Sixty-six (97.1%) samples passed the microbial load and content test while 2 (2.9%) failed. Eighteen (26.5%) samples passed all the three quality evaluation tests, while one (1.5%) sample (CFX1) failed all the tests. All the amoxicillin suspensions tested passed the three evaluation tests. All the ciprofloxacin, cotrimoxazole, flucloxacillin, artemether-lumefantrine, multivitamin, and folic acid samples failed the content of API test and are substandard. The overall API failure rate for imported products (59.4%) was comparable to locally manufactured (63.9%) samples. The results highlight the poor quality of the children's medicines studied and underscore the need for regular pharmacovigilance and surveillance systems to fight this menace.

8.
J Drug Deliv ; 2017: 8284025, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29435369

RESUMO

This study evaluated the in vitro potential of cocoa pod husk (CPH) pectin as a carrier for chronodelivery of hydrocortisone intended for adrenal insufficiency. FTIR studies found no drug-CPH pectin interactions, and chemometric analysis showed that pure hydrocortisone bears closer similarity to hydrocortisone in hot water soluble pectin (HWSP) than hydrocortisone in citric acid soluble pectin (CASP). CPH pectin-based hydrocortisone matrix tablets (~300 mg) were prepared by direct compression and wet granulation techniques, and the tablet cores were film-coated with a 15% HPMC formulation for timed release, followed by a 12.5% Eudragit® S100 formulation for acid resistance. In vitro drug release studies of the uncoated and coated matrix tablets in simulated gastrointestinal conditions showed that wet granulation tablets exhibit greater retardation of drug release in aqueous medium than directly compressed tablets. CASP showed greater suppression of drug release in aqueous medium than HWSP. Wet granulation HWSP-based matrix tablets coated to a final coat weight gain of ~25% w/w were optimized for chronodelivery of hydrocortisone in the colon. The optimized tablets exhibited a lag phase of ~6 h followed by accelerated drug release in the colonic region and have potential to control night time cortisol levels in patients with adrenal insufficiency.

9.
J Drug Deliv ; 2016: 6459280, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313894

RESUMO

Oral dissolvable films (ODFs) of diclofenac sodium intended for osteoarthritis were prepared using Albizia and Khaya gums as hydrophilic film formers. The physicochemical properties of the gums were characterized and the gums were used to prepare diclofenac sodium ODFs (~50 mg/4 cm(2) film) by solvent casting. The two gums showed satisfactory film forming properties. The physicomechanical properties, drug-excipient compatibility, and in vitro drug release of the films in phosphate buffer pH 6.8 were studied. Khaya gum had higher extraction yield, moisture content, insoluble matter and true density while Albizia gum showed greater swelling capacity, solubility, and minerals content. The ODFs were thin, soft, and flexible with smooth glossy surfaces and possessed satisfactory physicomechanical properties. FTIR studies showed that no interaction occurred between the drug and the gums. The ODFs disintegrated in <45 s achieved >75% drug release within 7 min with dissolution efficiencies of ~83-96%. Drug releases from F2, F3, F4, F5, and F6 were similar to F1 (p > 0.05; f1 < 15 and f2 ≥ 50) while F7 differed markedly from F1 (p < 0.001; f1 > 15 and f2 < 50). Drug release followed the Higuchi kinetic model which is indicative of Fickian drug diffusion.

10.
J Pharm (Cairo) ; 2016: 7608693, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066294

RESUMO

The physicochemical and antimicrobial properties of cocoa pod husk (CPH) pectin intended as a versatile pharmaceutical excipient and nutraceutical were studied. Properties investigated include pH, moisture content, ash values, swelling index, viscosity, degree of esterification (DE), flow properties, SEM, FTIR, NMR, and elemental content. Antimicrobial screening and determination of MICs against test microorganisms were undertaken using agar diffusion and broth dilution methods, respectively. CPH pectin had a DE of 26.8% and exhibited good physicochemical properties. Pectin had good microbiological quality and exhibited pseudoplastic, shear thinning behaviour, and high swelling capacity in aqueous media. The DE, FTIR, and NMR results were similar to those of previous studies and supported highly acetylated low methoxy pectin. CPH pectin was found to be a rich source of minerals and has potential as a nutraceutical. Pectin showed dose-dependent moderate activity against gram positive and gram negative microorganisms but weak activity against Listeria spp. and A. niger. The MICs of pectin ranged from 0.5 to 4.0 mg/mL, with the highest activity against E. coli and S. aureus (MIC: 0.5-1.0 mg/mL) and the lowest activity against A. niger (MIC: 2.0-4.0 mg/mL). The study has demonstrated that CPH pectin possesses the requisite properties for use as a nutraceutical and functional pharmaceutical excipient.

11.
Saudi Pharm J ; 24(1): 82-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26903772

RESUMO

The study was aimed at developing extended release matrix tablets of poorly water-soluble diclofenac sodium and highly water-soluble metformin hydrochloride by direct compression using cashew gum, xanthan gum and hydroxypropylmethylcellulose (HPMC) as release retardants. The suitability of light grade cashew gum as a direct compression excipient was studied using the SeDeM Diagram Expert System. Thirteen tablet formulations of diclofenac sodium (∼100 mg) and metformin hydrochloride (∼200 mg) were prepared with varying amounts of cashew gum, xanthan gum and HPMC by direct compression. The flow properties of blended powders and the uniformity of weight, crushing strength, friability, swelling index and drug content of compressed tablets were determined. In vitro drug release studies of the matrix tablets were conducted in phosphate buffer (diclofenac: pH 7.4; metformin: pH 6.8) and the kinetics of drug release was determined by fitting the release data to five kinetic models. Cashew gum was found to be suitable for direct compression, having a good compressibility index (ICG) value of 5.173. The diclofenac and metformin matrix tablets produced generally possessed fairly good physical properties. Tablet swelling and drug release in aqueous medium were dependent on the type and amount of release retarding polymer and the solubility of drug used. Extended release of diclofenac (∼24 h) and metformin (∼8-12 h) from the matrix tablets in aqueous medium was achieved using various blends of the polymers. Drug release from diclofenac tablets fitted zero order, first order or Higuchi model while release from metformin tablets followed Higuchi or Hixson-Crowell model. The mechanism of release of the two drugs was mostly through Fickian diffusion and anomalous non-Fickian diffusion. The study has demonstrated the potential of blended hydrophilic polymers in the design and optimization of extended release matrix tablets for soluble and poorly soluble drugs by direct compression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA