Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15867, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739991

RESUMO

How far are species distributed on the abyssal plains? Spanning from 3000 to 6000 m below sea level, abyssal plains cover three-quarters of the ocean floor and are the largest but also least explored habitat on Earth. The question of vertical and horizontal distribution is central to understanding biogeographic and population genetic processes within species inhabiting the deep-sea benthos. Amphipod crustaceans are an important and dominant taxon in this ecosystem. As they are brooders, their dispersal capacities are more limited compared to species with free-swimming larvae, and with the exception of a few scavenging species deep-sea amphipods are restricted to a single ocean. Based on an integrative taxonomic approach (morphology, COI, 16S and 18S) we demonstrate the occurrence of a predatory amphipod species, Rhachotropis abyssalis, in three oceans: the Antarctic Ross Sea, the Northwest Pacific and the North Atlantic; regions more than 20,000 km apart. Although such extensive geographic distributions may represent a rare exception for brooding predators, these findings might also be no exception at all, but a reflection of the rare sampling and rare taxonomic investigation of invertebrate predators in the deep-sea. Our findings highlight our abysmal state of knowledge regarding biodiversity and biogeography on abyssal plains.


Assuntos
Anfípodes , Ecossistema , Animais , Regiões Antárticas , Biodiversidade , Galinhas
2.
Biodivers Data J ; 9: e69955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720635

RESUMO

BACKGROUND: The growing interest in mineral resources of the deep sea, such as seafloor massive sulphide deposits, has led to an increasing number of exploration licences issued by the International Seabed Authority. In the Indian Ocean, four licence areas exist, resulting in an increasing number of new hydrothermal vent fields and the discovery of new species. Most studies focus on active venting areas including their ecology, but the non-vent megafauna of the Central Indian Ridge and South East Indian Ridge remains poorly known.In the framework of the Indian Ocean Exploration project in the German license area for seafloor massive sulphides, baseline imagery and sampling surveys were conducted yearly during research expeditions from 2013 to 2018, using video sledges and Remotely Operated Vehicles. NEW INFORMATION: This is the first report of an imagery collection of megafauna from the southern Central Indian- and South East Indian Ridge, reporting the taxonomic richness and their distribution. A total of 218 taxa were recorded and identified, based on imagery, with additional morphological and molecular confirmed identifications of 20 taxa from 89 sampled specimens. The compiled fauna catalogue is a synthesis of megafauna occurrences aiming at a consistent morphological identification of taxa and showing their regional distribution. The imagery data were collected during multiple research cruises in different exploration clusters of the German licence area, located 500 km north of the Rodriguez Triple Junction along the Central Indian Ridge and 500 km southeast of it along the Southeast Indian Ridge.

3.
Zootaxa ; 4950(1): zootaxa.4950.1.10, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33903326

RESUMO

Intact voucher specimens are essential to allow detailed morphological observations on specimens that are used in molecular genetic studies. This can be achieved either by dissection of small, taxonomically uninformative parts of the body for DNA extraction or by employing non-destructive DNA extraction methods. The latter is particularly important for small-bodied animals. Here we test the effects of Chelex-based DNA extraction on the integrity of setae and setules in Amphipoda, fragile structures of great taxonomic importance. Our results show that DNA extraction using Chelex had no influence on the setae and setule structure and is well suited for reverse taxonomic approaches and the long-term storage of morphological vouchers. A detailed protocol for non-destructive DNA extraction is provided.


Assuntos
Anfípodes , Anfípodes/classificação , Anfípodes/genética , Anfípodes/fisiologia , Animais , Crustáceos , DNA/genética , Sensilas
4.
Mol Phylogenet Evol ; 161: 107153, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33741537

RESUMO

Hemicycla mascaensis and H. diegoi are short-range endemics that occur allopatrically in small areas in the Teno Mountains in the western part of Tenerife (Canary Islands). Both taxa have been recognised as distinct species based on differences in shell morphology and genital anatomy. Preliminary molecular analyses using mitochondrial markers suggested a potential paraphyly of H. diegoi with regard to H. mascaensis. We here use multilocus AFLP data and ddRADseq data as well as distribution data, data on shell morphology and genital anatomy to assess the status of these taxa using phylogenetic analyses, species tree reconstruction and molecular species delimitation based on the multispecies coalescent as implemented in BFD* and BPP in an integrative approach. Our analyses show that, based on the analysis of multilocus data, the two taxa are reciprocally monophyletic. Species delimitation methods, however, tend to recognise all investigated populations as distinct species, albeit neither lending unambiguous support to any of the species hypotheses. The comparison of the anatomy of distal genital organs further suggests differentiation within H. mascaensis. This highlights the need for a balanced weighting of arguments from different lines of evidence to determine species status and calls for cautious interpretations of the results of molecular species delimitation analyses, especially in organisms with low active dispersal capacities and expected distinct population structuring such as land snails. Taking all available evidence into account, we favour to recognise H. mascaensis and H. diegoi as distinct species, acknowledging, though, that the recognition of both taxa as subspecies (with possibly a third yet undescribed) would also be an option as morphological differentiation is within the limits of other land snail species that are traditionally subdivided into subspecies.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Código de Barras de DNA Taxonômico , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Caramujos/anatomia & histologia , Caramujos/genética , Animais , Mitocôndrias/genética , Caramujos/classificação , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA