Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Rep ; 8(1): 14292, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250174

RESUMO

Haploinsufficiency of the human SHOX gene causes Léri-Weill dyschondrosteosis (LWD), characterized by shortening of the middle segments of the limbs and Madelung deformity of the wrist. As many as 35% of LWD cases are caused by deletions of non-coding sequences downstream of SHOX that presumably remove an enhancer or enhancers necessary for SHOX expression in developing limbs. We searched for these active sequences using a transgenic mouse assay and identified a 563 basepair (bp) enhancer with specific activity in the limb regions where SHOX functions. This enhancer has previously escaped notice because of its poor evolutionary conservation, although it does contain 100 bp that are conserved in non-rodent mammals. A primary cell luciferase assay confirmed the enhancer activity of the conserved core sequence and demonstrated that putative HOX binding sites are required for its activity. This enhancer is removed in most non-coding deletions that cause LWD. However, we did not identify any likely pathogenic variants of the enhancer in a screen of 124 LWD individuals for whom no causative mutation had been found, suggesting that only larger deletions in the region commonly cause LWD. We hypothesize that loss of this enhancer contributes to the pathogenicity of deletions downstream of SHOX.


Assuntos
Elementos Facilitadores Genéticos/genética , Deleção de Genes , Proteína de Homoeobox de Baixa Estatura/genética , Animais , Pareamento de Bases/genética , Sequência de Bases , Sítios de Ligação , Sequência Conservada/genética , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Transtornos do Crescimento/genética , Humanos , Luciferases/metabolismo , Camundongos Transgênicos , Osteocondrodisplasias/genética , Proteína de Homoeobox de Baixa Estatura/metabolismo , Transgenes
2.
Development ; 143(14): 2548-60, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287812

RESUMO

Vertebrate appendage patterning is programmed by Hox-TALE factor-bound regulatory elements. However, it remains unclear which cell lineages are commissioned by Hox-TALE factors to generate regional specific patterns and whether other Hox-TALE co-factors exist. In this study, we investigated the transcriptional mechanisms controlled by the Shox2 transcriptional regulator in limb patterning. Harnessing an osteogenic lineage-specific Shox2 inactivation approach we show that despite widespread Shox2 expression in multiple cell lineages, lack of the stylopod observed upon Shox2 deficiency is a specific result of Shox2 loss of function in the osteogenic lineage. ChIP-Seq revealed robust interaction of Shox2 with cis-regulatory enhancers clustering around skeletogenic genes that are also bound by Hox-TALE factors, supporting a lineage autonomous function of Shox2 in osteogenic lineage fate determination and skeleton patterning. Pbx ChIP-Seq further allowed the genome-wide identification of cis-regulatory modules exhibiting co-occupancy of Pbx, Meis and Shox2 transcriptional regulators. Integrative analysis of ChIP-Seq and RNA-Seq data and transgenic enhancer assays indicate that Shox2 patterns the stylopod as a repressor via interaction with enhancers active in the proximal limb mesenchyme and antagonizes the repressive function of TALE factors in osteogenesis.


Assuntos
Padronização Corporal , Extremidades/embriologia , Proteínas de Homeodomínio/metabolismo , Osteogênese , Animais , Sequência de Bases , Sítios de Ligação/genética , Padronização Corporal/genética , Linhagem da Célula , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Elementos Facilitadores Genéticos , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas de Homeodomínio/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Biológicos , Motivos de Nucleotídeos/genética , Osteogênese/genética , Ligação Proteica
3.
Biotechniques ; 56(2): 85-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24502798

RESUMO

Micromass cultures of primary embryonic limb mesenchyme are a valuable model system for studying cartilage formation in vitro. However, high efficiency introduction of plasmid DNA into this hard-to-transfect cell type typically results in considerable cell death and significantly impeded chondrogenesis when the cells are subsequently plated in high density micromass. Here, we describe a novel method in which square wave pulse electroporation of chick embryo wing bud mesenchyme suspended in protective sucrose buffer results in high efficiency transfection without substantially affecting micromass culture cell viability or chondrogenic differentiation potential. Furthermore, we show that this protocol can be employed, along with effector gene expression vectors, to generate observable changes in the amount of cartilage tissue formed in micromass, unlike lower efficiency, higher cytotoxicity techniques that require co-transfection of reporter plasmids to monitor changes in the extent of chondrogenesis and correct for differences in cell viability.


Assuntos
DNA/metabolismo , Eletroporação/métodos , Mesoderma/citologia , Sacarose/química , Transfecção/métodos , Animais , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Plasmídeos/genética
4.
J Cell Sci ; 125(Pt 24): 6071-83, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23038774

RESUMO

In humans, loss of SHOX gene function is responsible for the mesomelic short stature characteristic of Turner syndrome, Leri-Weill dyschondrosteosis, and Langer dysplasia. In a mouse model of SHOX deficiency, Prrx1-Cre-driven limb-specific deletion of the paralogous gene Shox2 results in severe rhizomelia. In this study, we show that Col2a1-Cre-driven deletion of Shox2 in developing chondrocytes also results in shortening of the stylopodial skeleton (i.e. humerus, femur) and that this rhizomelia is due to precocious chondrocyte maturation and hypertrophy. We demonstrate, using the micromass culture model system, that increased BMP activity triggers accelerated maturation and hypertrophy in Col2a1-Cre Shox2 mutant chondrocytes and we confirm in vivo that elevated transcript levels and expanded expression domains of Bmp2 and 4 are associated with premature formation of the hypertrophic zone in mutant humeri. In micromass cultures of Prrx1-Cre Shox2 mutant limb cells, we find that Shox2 deletion in undifferentiated mesenchymal cells results in increased BMP activity that enhances early chondrogenesis, but is insufficient to provoke chondrocyte maturation and hypertrophy. Similarly, shRNA-mediated Shox2 knockdown in multipotent C3H10T1/2 cells and primary mouse bone marrow mesenchymal stem cells results in spontaneous chondrogenesis in the absence of chondrostimulation, but again fails to induce progression through the later stages of chondrogenic differentiation. Importantly, exogenous BMP supplementation can overcome the block to maturation and hypertrophy caused by Shox2 depletion prior to overt chondrogenesis. Thus, we provide evidence that Shox2 regulates progression through chondrogenesis at two distinct stages--the onset of early differentiation and the transition to maturation and hypertrophy.


Assuntos
Condrogênese/fisiologia , Proteínas de Homeodomínio/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Extremidades , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Stem Cell Res Ther ; 1(2): 11, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20637060

RESUMO

INTRODUCTION: Bone marrow (BM) stroma currently represents the most common and investigated source of mesenchymal progenitor cells (MPCs); however, comparable adult progenitor or stem cells have also been isolated from a wide variety of tissues. This study aims to assess the functional similarities of MPCs from different tissues and to identify specific factor(s) related to their multipotency. METHODS: For this purpose, we directly compared MPCs isolated from different adult tissues, including bone marrow, tonsil, muscle, and dental pulp. We first examined and compared proliferation rates, immunomodulatory properties, and multidifferentiation potential of these MPCs in vitro. Next, we specifically evaluated activin A expression profile and activin A:follistatin ratio in MPCs from the four sources. RESULTS: The multidifferentiation potential of the MPCs is correlated with activin A level and/or the activin A:follistatin ratio. Interestingly, by siRNA-mediated activin A knockdown, activin A was shown to be required for the chondrogenic and osteogenic differentiation of MPCs. These findings strongly suggest that activin A has a pivotal differentiation-related role in the early stages of chondrogenesis and osteogenesis while inhibiting adipogenesis of MPCs. CONCLUSIONS: This comparative analysis of MPCs from different tissue sources also identifies bone marrow-derived MPCs as the most potent MPCs in terms of multilineage differentiation and immunosuppression, two key requirements in cell-based regenerative medicine. In addition, this study implicates the significance of activin A as a functional marker of MPC identity.


Assuntos
Ativinas/metabolismo , Adipogenia/genética , Condrogênese/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Ativinas/biossíntese , Ativinas/genética , Adulto , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária/citologia , Folistatina/biossíntese , Humanos , Imuno-Histoquímica/métodos , Terapia de Imunossupressão , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Pessoa de Meia-Idade , Músculos/citologia , Tonsila Palatina/citologia , Interferência de RNA , RNA Interferente Pequeno
6.
J Cell Physiol ; 224(1): 178-86, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20232315

RESUMO

Adult human bone marrow-derived multipotent progenitor cells (MPCs) are able to differentiate into a variety of specialized cell types, including chondrocytes, and are considered a promising candidate cell source for use in cartilage tissue engineering. In this study, we examined the regulation of MPC chondrogenesis by mitogen-activated protein kinases in an attempt to better understand how to generate hyaline cartilage in the laboratory that more closely resembles native tissue. Specifically, we employed the high-density pellet culture model system to assess the roles of ERK5 and ERK1/2 pathway signaling in MPC chondrogenesis. Western blotting revealed that high levels of ERK5 phosphorylation correlate with low levels of MPC chondrogenesis and that as TGF-beta 3-enhanced MPC chondrogenesis proceeds, phospho-ERK5 levels steadily decline. Conversely, levels of phospho-ERK1/2 paralleled the progression of MPC chondrogenesis. siRNA-mediated knockdown of ERK5 pathway components MEK5 and ERK5 resulted in increased MPC pellet mRNA transcript levels of the cartilage-characteristic marker genes SOX9, COL2A1, AGC, L-SOX5, and SOX6, as well as enhanced accumulation of SOX9 protein, collagen type II protein, and Alcian blue-stainable proteoglycan. In contrast, knockdown of ERK1/2 pathway members MEK1 and ERK1 decreased expression of all chondrogenic markers tested. Finally, overexpression of MEK5 and ERK5 also depressed MPC chondrogenesis, as indicated by diminished activity of a co-transfected collagen II promoter-luciferase reporter construct. In conclusion, our results suggest a novel role for the ERK5 pathway as an important negative regulator of adult human MPC chondrogenesis and illustrate that the ERK5 and ERK1/2 kinase cascades play opposing roles regulating MPC cartilage formation.


Assuntos
Células-Tronco Adultas/enzimologia , Células da Medula Óssea/enzimologia , Condrogênese , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Células-Tronco Multipotentes/enzimologia , Células-Tronco/enzimologia , Idoso , Idoso de 80 Anos ou mais , Cartilagem/metabolismo , Diferenciação Celular , Células Cultivadas , Condrogênese/genética , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/genética , Fosforilação , Interferência de RNA , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção , Fator de Crescimento Transformador beta3/metabolismo
7.
J Cell Biochem ; 109(1): 265-76, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19937731

RESUMO

Cytoskeletal proteins play important regulatory roles in a variety of cellular processes, including proliferation, migration, and differentiation. However, whereas actin and tubulin have established roles regulating developmental chondrogenesis, there is no evidence supporting a function for the intermediate filament vimentin in embryonic cartilage formation. We hypothesized that vimentin may regulate the chondrogenic differentiation of adult multipotent progenitor cells (MPCs), such as those involved in cartilage formation during bone fracture repair. As our model of adult progenitor cell chondrogenesis, we employed high-density pellet cultures of human bone marrow-derived MPCs. siRNA-mediated knockdown of vimentin mRNA and protein triggered a reduction in the extent of MPC cartilage formation, as evidenced by depressed accumulation of mRNAs for the cartilage-specific marker genes aggrecan and collagen type II, as well as reduced levels of Alcian blue-stainable proteoglycan and collagen II protein in the extracellular matrix. Moreover, mRNA and protein levels for the chondro-regulatory transcription factors SOX5, SOX6, and SOX9 were diminished by vimentin knockdown. Depleted cellular vimentin also induced a drastic reduction in PKA phosphorylation levels but did not affect the phosphorylation of multiple other chondro-regulatory kinases and transcription factors, including ERK1/2, p38, Smad2, and Smad1/5/8. Importantly, siRNA-mediated knockdown of PKA C-alpha mRNA and protein mimicked the reduction in chondrogenesis caused by diminished cellular vimentin. Finally, overexpression of vimentin in MPCs significantly enhanced the activity of a transfected collagen II promoter-luciferase reporter gene. In conclusion, we describe a novel role for the intermediate filament vimentin as a positive regulator of adult human bone marrow-derived MPC chondrogenesis.


Assuntos
Células da Medula Óssea/metabolismo , Condrogênese/fisiologia , Células-Tronco Multipotentes/metabolismo , Transdução de Sinais/fisiologia , Vimentina/metabolismo , Western Blotting , Eletroporação , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/análise , RNA Interferente Pequeno , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXD/metabolismo , Fatores de Transcrição/metabolismo , Transfecção
8.
Birth Defects Res C Embryo Today ; 87(4): 351-71, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19960542

RESUMO

In recent years, there has been a great deal of interest in the development of regenerative approaches to produce hyaline cartilage ex vivo that can be utilized for the repair or replacement of damaged or diseased tissue. It is clinically imperative that cartilage engineered in vitro mimics the molecular composition and organization of and exhibits biomechanical properties similar to persistent hyaline cartilage in vivo. Experimentally, much of our current knowledge pertaining to the regulation of cartilage formation, or chondrogenesis, has been acquired in vitro utilizing high-density cultures of undifferentiated chondroprogenitor cells stimulated to differentiate into chondrocytes. In this review, we describe the extracellular matrix molecules, nuclear transcription factors, cytoplasmic protein kinases, cytoskeletal components, and plasma membrane receptors that characterize cells undergoing chondrogenesis in vitro and regulate the progression of these cells through the chondrogenic differentiation program. We also provide an extensive list of growth factors and other extracellular signaling molecules, as well as chromatin remodeling proteins such as histone deacetylases, known to regulate chondrogenic differentiation in culture. In addition, we selectively highlight experiments that demonstrate how an understanding of normal hyaline cartilage formation can lead to the development of novel cartilage tissue engineering strategies. Finally, we present directions for future studies that may yield information applicable to the in vitro generation of hyaline cartilage that more closely resembles native tissue.


Assuntos
Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/fisiologia , Animais , Cartilagem Articular/citologia , Cartilagem Articular/crescimento & desenvolvimento , Cartilagem Articular/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Condrogênese/efeitos dos fármacos , Colágeno/metabolismo , Citoesqueleto/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Glicosaminoglicanos/metabolismo , Substâncias de Crescimento/metabolismo , Substâncias de Crescimento/farmacologia , Histona Desacetilases/metabolismo , Humanos , Cartilagem Hialina/citologia , Cartilagem Hialina/crescimento & desenvolvimento , Cartilagem Hialina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Fenótipo , Proteoglicanas/metabolismo , Fatores de Transcrição/metabolismo
9.
Birth Defects Res C Embryo Today ; 84(2): 131-54, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18546337

RESUMO

The majority of bones comprising the adult vertebrate skeleton are generated from hyaline cartilage templates that form during embryonic development. A process known as endochondral ossification is responsible for the conversion of these transient cartilage anlagen into mature, calcified bone. Endochondral ossification is a highly regulated, multistep cell specification program involving the initial differentiation of prechondrogenic mesenchymal cells into hyaline chondrocytes, terminal differentiation of hyaline chondrocytes into hypertrophic chondrocytes, and finally, apoptosis of hypertrophic chondrocytes followed by bone matrix deposition. Recently, extensive research has been carried out describing roles for the three major mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and c-jun N-terminal kinase (JNK) pathways, in the successive stages of chondrogenic differentiation. In this review, we survey this research examining the involvement of ERK1/2, p38, and JNK pathway signaling in all aspects of the chondrogenic differentiation program from embryonic through postnatal stages of development. In addition, we summarize evidence from in vitro studies examining MAPK function in immortalized chondrogenic cell lines and adult mesenchymal stem cells. We also provide suggestions for future studies that may help ameliorate existing confusion concerning the specific roles of MAPK signaling at different stages of chondrogenesis.


Assuntos
Cartilagem/embriologia , Condrogênese/fisiologia , Botões de Extremidades/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Cartilagem/citologia , Cartilagem/patologia , Diferenciação Celular/fisiologia , Face/embriologia , Homeostase , Humanos , Hipertrofia , MAP Quinase Quinase 4/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ossificação Heterotópica , Osteogênese , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia
10.
J Cell Physiol ; 211(1): 233-43, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17167778

RESUMO

Fibroblast growth factors (FGFs) and their receptors play fundamental roles regulating growth, morphogenesis, and cartilage formation in embryonic limbs and facial primordia. However, the intracellular pathways that transduce FGF signals during the differentiation of pluripotent mesenchymal cells into chondrocytes are currently unknown. Our present study demonstrates that FGF8, 4, and 2 treatments exert both inhibitory and stimulatory effects on cartilage differentiation in micromass cultures prepared from mesenchymal cells of the chick embryo wing bud, frontonasal mass, and mandibular arch through activation of the MEK-ERK mitogen-activated protein kinase (MAPK) cascade. In cultures of stage 23/24 and stage 28/29 wing bud mesenchyme, as well as stage 24/25 and stage 28/29 frontonasal cells, FGF treatments depressed cartilage matrix production and decreased transcript levels for three cartilage-specific genes: col2a1, aggrecan, and sox9. Conversely, FGF treatment increased cartilage differentiation in cultures of stage 24/25 and stage 28/29 mandibular mesenchyme. In all cell types, FGF treatment elevated endogenous ERK phosphorylation. Moreover, both the stimulatory effects of FGFs on mandibular chondrogenesis, as well as the inhibitory effects of FGFs on wing mesenchyme and stage 24/25 frontonasal cells, were completely blocked when cultures were treated with MEK inhibitor U0126 or transfected with dominant negative ERK2. Thus, MEK-ERK activation is an essential component of the signal transduction pathway that mediates both positive and negative effects of FGFs 8, 4, and 2 on chondrogenesis in embryonic limb, mandibular, and early-stage frontonasal mesenchyme cells. Interestingly, the effects of FGF on late-stage frontonasal cells appear to be relayed by an ERK-independent system.


Assuntos
Condrogênese/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Face , Fatores de Crescimento de Fibroblastos/farmacologia , Mandíbula/enzimologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Asas de Animais/enzimologia , Animais , Butadienos/farmacologia , Cartilagem/metabolismo , Células Cultivadas , Embrião de Galinha , Colágeno Tipo II/genética , Elementos Facilitadores Genéticos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Face/embriologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 4 de Crescimento de Fibroblastos/farmacologia , Fator 8 de Crescimento de Fibroblasto/farmacologia , Genes Dominantes , Humanos , Mandíbula/citologia , Mandíbula/efeitos dos fármacos , Mandíbula/embriologia , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Asas de Animais/citologia , Asas de Animais/efeitos dos fármacos , Asas de Animais/embriologia
11.
Exp Cell Res ; 312(7): 1079-92, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16457813

RESUMO

The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK cascade, has been shown to regulate cartilage differentiation in embryonic limb mesoderm and several chondrogenic cell lines. In the present study, we employed the micromass culture system to define the roles of MEK-ERK signaling in the chondrogenic differentiation of neural crest-derived ectomesenchyme cells of the embryonic chick facial primordia. In cultures of frontonasal mesenchyme isolated from stage 24/25 embryos, treatment with the MEK inhibitor U0126 increased type II collagen and glycosaminoglycan deposition into cartilage matrix, elevated mRNA levels for three chondrogenic marker genes (col2a1, aggrecan, and sox9), and increased expression of a Sox9-responsive collagen II enhancer-luciferase reporter gene. Transfection of frontonasal mesenchyme cells with dominant negative ERK increased collagen II enhancer activation, whereas transfection of constitutively active MEK decreased its activity. Thus, MEK-ERK signaling inhibits chondrogenesis in stage 24/25 frontonasal mesenchyme. Conversely, MEK-ERK signaling enhanced chondrogenic differentiation in mesenchyme of the stage 24/25 mandibular arch. In mandibular mesenchyme cultures, pharmacological MEK inhibition decreased cartilage matrix deposition, cartilage-specific RNA levels, and collagen II enhancer activity. Expression of constitutively active MEK increased collagen II enhancer activation in mandibular mesenchyme, while dominant negative ERK had the opposite effect. Interestingly, MEK-ERK modulation had no significant effects on cultures of maxillary or hyoid process mesenchyme cells. Moreover, we observed a striking shift in the response of frontonasal mesenchyme to MEK-ERK modulation by stage 28/29 of development.


Assuntos
Condrogênese/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Face/embriologia , MAP Quinase Quinase Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Butadienos/farmacologia , Cartilagem/embriologia , Cartilagem/enzimologia , Células Cultivadas , Embrião de Galinha , Colágeno Tipo II/biossíntese , Colágeno Tipo II/genética , Elementos Facilitadores Genéticos , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/enzimologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Mesoderma/citologia , Mesoderma/enzimologia , Nitrilas/farmacologia
12.
J Biol Chem ; 279(6): 4588-95, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14617631

RESUMO

The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK kinase cascade, has recently been implicated in the regulation of embryonic cartilage differentiation. However, its precise role in this complex process remains controversial. To more thoroughly examine the role of the MEK-ERK kinase cascade in chondrogenesis, we analyzed the effects of two structurally different pharmacological inhibitors of MEK, the upstream kinase activator of ERK, on chondrocyte differentiation in micromass cultures of embryonic chick limb mesenchyme cells. We found that the MEK inhibitors, U0126 and PD98059, promote increased accumulation of cartilage-characteristic mRNA transcripts for type II collagen, aggrecan, and the transcription factor, Sox9. PD98059 treatment stimulated increased deposition of sulfated glycosaminoglycan into both Alcian blue-stainable cartilage matrix and the surrounding culture medium, whereas U0126 elevated glycosaminoglycan secretion into the medium fraction alone. Both MEK inhibitors increased total type II collagen protein accumulation in micromass culture and elevated the activity of a transfected type II collagen enhancer-luciferase reporter gene. Thus, pharmacological MEK inhibition induced increased expression of multiple chondrocyte differentiation markers. Conversely, transfection of limb mesenchyme cells with a constitutively active MEK1 plasmid resulted in a prominent decrease in the activity of a co-transfected type II collagen enhancer-luciferase reporter gene. Collectively, these findings support the hypothesis that signaling through the MEK-ERK kinase cascade may function as an important inhibitory regulator of embryonic cartilage differentiation.


Assuntos
Cartilagem/embriologia , Cartilagem/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Butadienos/farmacologia , Embrião de Galinha , Condrogênese/genética , Condrogênese/fisiologia , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Inibidores Enzimáticos/farmacologia , Extremidades/embriologia , Flavonoides/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mesoderma/metabolismo , Nitrilas/farmacologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA