Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 136(4): 752-763, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26560964

RESUMO

Learning and memory is dependent on postsynaptic architecture and signaling processes in forebrain regions. The insulin receptor substrate protein of 53 kDa (IRSp53, also known as Baiap2) is a signaling and adapter protein in forebrain excitatory synapses. Mice deficient in IRSp53 display enhanced levels of postsynaptic N-methyl-D-aspartate receptors (NMDARs) and long-term potentiation (LTP) associated with severe learning deficits. In humans, reduced IRSp53/Baiap2 expression is associated with a variety of neurological disorders including autism, schizophrenia, and Alzheimer's disease. Here, we analyzed mice lacking one copy of the gene coding for IRSp53 using behavioral tests including contextual fear conditioning and the puzzle box. We show that a 50% reduction in IRSp53 levels strongly affects the performance in fear-evoking learning paradigms. This correlates with increased targeting of NMDARs to the postsynaptic density (PSD) in hippocampi of both heterozygous and knock out (ko) mice at the expense of extrasynaptic NMDARs. As hippocampal NMDAR-dependent LTP is enhanced in IRSp53-deficient mice, we investigated signaling cascades important for the formation of fear-evoked memories. Here, we observed a dramatic increase in cAMP response element-binding protein-dependent signaling in heterozygous and IRSp53-deficient mice, necessary for the transcriptional dependent phase of LTP. In contrast, activation of the MAPK and Akt kinase pathways required for translation-dependent phase of LTP are reduced. Our data suggest that loss or even the reduction in IRSp53 increases NMDAR-dependent cAMP responsive element-binding protein activation in the hippocampus, and interferes with the ability of mice to learn upon anxiety-related stimuli. We show here that a moderate reduction in the postsynaptic protein IRSp53 in mice leads to an increase in postsynaptic NMDA receptors. Both in heterozygous and IRSp53 deficient mice, this is associated with altered postsynaptic signal transduction, and poor performance of mice in fear-associated learning paradigms, indicating that precise control of postsynaptic NMDA receptor density is essential for memory formation.

2.
Exp Neurol ; 227(1): 42-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20851119

RESUMO

Deficits in executive functions are key features of schizophrenia. Rodent behavioral paradigms used so far to find animal correlates of such deficits require extensive effort and time. The puzzle box is a problem-solving test in which mice are required to complete escape tasks of increasing difficulty within a limited amount of time. Previous data have indicated that it is a quick but highly reliable test of higher-order cognitive functioning. We evaluated the use of the puzzle box to explore executive functioning in five different mouse models of schizophrenia: mice with prefrontal cortex and hippocampus lesions, mice treated sub-chronically with the NMDA-receptor antagonist MK-801, mice constitutively lacking the GluA1 subunit of AMPA-receptors, and mice over-expressing dopamine D2 receptors in the striatum. All mice displayed altered executive functions in the puzzle box, although the nature and extent of the deficits varied between the different models. Deficits were strongest in hippocampus-lesioned and GluA1 knockout mice, while more subtle deficits but specific to problem solving were found in the medial prefrontal-lesioned mice, MK-801-treated mice, and in mice with striatal overexpression of D2 receptors. Data from this study demonstrate the utility of the puzzle box as an effective screening tool for executive functions in general and for schizophrenia mouse models in particular.


Assuntos
Transtornos Cognitivos/diagnóstico , Função Executiva/fisiologia , Resolução de Problemas/fisiologia , Esquizofrenia/complicações , Animais , Comportamento Animal/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/mortalidade , Modelos Animais de Doenças , Maleato de Dizocilpina/uso terapêutico , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/toxicidade , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Função Executiva/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/efeitos dos fármacos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Resolução de Problemas/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Receptores de AMPA/deficiência , Receptores de Dopamina D2/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/mortalidade
3.
J Neurosci ; 30(12): 4221-31, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20335457

RESUMO

Apoptosis of neurons in the maturing neocortex has been recorded in a wide variety of mammals, but very little is known about its effects on cortical differentiation. Recent research has implicated the RhoA GTPase subfamily in the control of apoptosis in the developing nervous system and in other tissue types. Rho GTPases are important components of the signaling pathways linking extracellular signals to the cytoskeleton. To investigate the role of the RhoA GTPase subfamily in neocortical apoptosis and differentiation, we have engineered a mouse line in which a dominant-negative RhoA mutant (N19-RhoA) is expressed from the Mapt locus, such that all neurons of the developing nervous system are expressing the N19-RhoA inhibitor. Postnatal expression of N19-RhoA led to no major changes in neocortical anatomy. Six layers of the neocortex developed and barrels (whisker-related neural modules) formed in layer IV. However, the density and absolute number of neurons in the somatosensory cortex increased by 12-26% compared with wild-type littermates. This was not explained by a change in the migration of neurons during the formation of cortical layers but rather by a large decrease in the amount of neuronal apoptosis at postnatal day 5, the developmental maximum of cortical apoptosis. In addition, overexpression of RhoA in cortical neurons was seen to cause high levels of apoptosis. These results demonstrate that RhoA-subfamily members play a major role in developmental apoptosis in postnatal neocortex of the mouse but that decreased apoptosis does not alter cortical cytoarchitecture and patterning.


Assuntos
Apoptose/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neocórtex/enzimologia , Neurônios/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Vias Aferentes/embriologia , Vias Aferentes/enzimologia , Vias Aferentes/crescimento & desenvolvimento , Fatores Etários , Animais , Animais Recém-Nascidos , Contagem de Células/métodos , Diferenciação Celular/fisiologia , Movimento Celular/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Dominantes , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Proteína rhoA de Ligação ao GTP/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA