Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
STAR Protoc ; 4(4): 102705, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971942

RESUMO

Cultures enriched in glioblastoma stem-like cells (GSCs) are prominent in vitro models to investigate molecular determinants and therapeutic targets of glioblastoma; however, conventional GSC derivation protocols fail to preserve GSC heterogeneity. Here, we present a protocol for the propagation of heterogeneous GSC cultures starting from cell resuspensions containing the entire tumor mass. We describe steps for isolation of GSCs and their maintenance and expansion in culture. We then detail procedures for preliminary analysis to be performed on freshly isolated material. For complete details on the use and execution of this protocol, please refer to De Bacco et al.1.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia
2.
Cell Rep ; 42(8): 112816, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37505981

RESUMO

Glioblastoma (GBM) is known as an intractable, highly heterogeneous tumor encompassing multiple subclones, each supported by a distinct glioblastoma stem cell (GSC). The contribution of GSC genetic and transcriptional heterogeneity to tumor subclonal properties is debated. In this study, we describe the systematic derivation, propagation, and characterization of multiple distinct GSCs from single, treatment-naive GBMs (GSC families). The tumorigenic potential of each GSC better correlates with its transcriptional profile than its genetic make-up, with classical GSCs being inherently more aggressive and mesenchymal more dependent on exogenous growth factors across multiple GBMs. These GSCs can segregate and recapitulate different histopathological aspects of the same GBM, as shown in a paradigmatic tumor with two histopathologically distinct components, including a conventional GBM and a more aggressive primitive neuronal component. This study provides a resource for investigating how GSCs with distinct genetic and/or phenotypic features contribute to individual GBM heterogeneity and malignant escalation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/metabolismo , Amplificação de Genes , Células-Tronco Neoplásicas/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral
3.
Mol Oncol ; 17(7): 1280-1301, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36862005

RESUMO

In colorectal cancer, the mechanisms underlying tumor aggressiveness require further elucidation. Taking advantage of a large panel of human metastatic colorectal cancer xenografts and matched stem-like cell cultures (m-colospheres), here we show that the overexpression of microRNA 483-3p (miRNA-483-3p; also known as MIR-483-3p), encoded by a frequently amplified gene locus, confers an aggressive phenotype. In m-colospheres, endogenous or ectopic miRNA-483-3p overexpression increased proliferative response, invasiveness, stem cell frequency, and resistance to differentiation. Transcriptomic analyses and functional validation found that miRNA-483-3p directly targets NDRG1, known as a metastasis suppressor involved in EGFR family downregulation. Mechanistically, miRNA-483-3p overexpression induced the signaling pathway triggered by ERBB3, including AKT and GSK3ß, and led to the activation of transcription factors regulating epithelial-mesenchymal transition (EMT). Consistently, treatment with selective anti-ERBB3 antibodies counteracted the invasive growth of miRNA-483-3p-overexpressing m-colospheres. In human colorectal tumors, miRNA-483-3p expression inversely correlated with NDRG1 and directly correlated with EMT transcription factor expression and poor prognosis. These results unveil a previously unrecognized link between miRNA-483-3p, NDRG1, and ERBB3-AKT signaling that can directly support colorectal cancer invasion and is amenable to therapeutic targeting.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , MicroRNAs , Neoplasias Retais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Baixo/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/patologia , Neoplasias do Colo/genética , Fatores de Transcrição/metabolismo , Neoplasias Retais/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Invasividade Neoplásica/genética
4.
EMBO Mol Med ; 15(3): e16104, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722641

RESUMO

The genetic changes sustaining the development of cancers of unknown primary (CUP) remain elusive. The whole-exome genomic profiling of 14 rigorously selected CUP samples did not reveal specific recurring mutation in known driver genes. However, by comparing the mutational landscape of CUPs with that of most other human tumor types, it emerged a consistent enrichment of changes in genes belonging to the axon guidance KEGG pathway. In particular, G842C mutation of PlexinB2 (PlxnB2) was predicted to be activating. Indeed, knocking down the mutated, but not the wild-type, PlxnB2 in CUP stem cells resulted in the impairment of self-renewal and proliferation in culture, as well as tumorigenic capacity in mice. Conversely, the genetic transfer of G842C-PlxnB2 was sufficient to promote CUP stem cell proliferation and tumorigenesis in mice. Notably, G842C-PlxnB2 expression in CUP cells was associated with basal EGFR phosphorylation, and EGFR blockade impaired the viability of CUP cells reliant on the mutated receptor. Moreover, the mutated PlxnB2 elicited CUP cell invasiveness, blocked by EGFR inhibitor treatment. In sum, we found that a novel activating mutation of the axon guidance gene PLXNB2 sustains proliferative autonomy and confers invasive properties to stem cells isolated from cancers of unknown primary, in EGFR-dependent manner.


Assuntos
Neoplasias Primárias Desconhecidas , Células-Tronco Neoplásicas , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Orientação de Axônios , Receptores ErbB/genética , Mutação , Recidiva Local de Neoplasia , Neoplasias Primárias Desconhecidas/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neoplásicas/patologia
5.
Clin Cancer Res ; 29(7): 1252-1266, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648487

RESUMO

PURPOSE: Current glioma diagnostic guidelines call for molecular profiling to stratify patients into prognostic and treatment subgroups. In case the tumor tissue is inaccessible, cerebrospinal fluid (CSF) has been proposed as a reliable tumor DNA source for liquid biopsy. We prospectively investigated the use of CSF for molecular characterization of newly diagnosed gliomas. EXPERIMENTAL DESIGN: We recruited two cohorts of newly diagnosed patients with glioma, one (n = 45) providing CSF collected in proximity of the tumor, the other (n = 39) CSF collected by lumbar puncture (LP). Both cohorts provided tumor tissues by surgery concomitant with CSF sampling. DNA samples retrieved from CSF and matched tumors were systematically characterized and compared by comprehensive (NGS, next-generation sequencing) or targeted (ddPCR, droplet digital PCR) methodologies. Conventional and molecular diagnosis outcomes were compared. RESULTS: We report that tumor DNA is abundant in CSF close to the tumor, but scanty and mostly below NGS sensitivity threshold in CSF from LP. Indeed, tumor DNA is mostly released by cells invading liquoral spaces, generating a gradient that attenuates by departing from the tumor. Nevertheless, in >60% of LP CSF samples, tumor DNA is sufficient to assess a selected panel of genetic alterations (IDH and TERT promoter mutations, EGFR amplification, CDKN2A/B deletion: ITEC protocol) and MGMT methylation that, combined with imaging, enable tissue-agnostic identification of main glioma molecular subtypes. CONCLUSIONS: This study shows potentialities and limitations of CSF liquid biopsy in achieving molecular characterization of gliomas at first clinical presentation and proposes a protocol to maximize diagnostic information retrievable from CSF DNA.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Mutação , Prognóstico , Biópsia Líquida , DNA de Neoplasias , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Biomarcadores Tumorais/genética
7.
Virchows Arch ; 482(3): 463-475, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346458

RESUMO

The aim of this study is to envisage a streamlined pathological workup to rule out CUPs in patients presenting with MUOs. Sixty-four MUOs were classified using standard histopathology. Clinical data, immunocytochemical markers, and results of molecular analysis were recorded. MUOs were histologically subdivided in clear-cut carcinomas (40 adenocarcinomas, 11 squamous, and 3 neuroendocrine carcinomas) and unclear-carcinoma features (5 undifferentiated and 5 sarcomatoid tumors). Cytohistology of 7/40 adenocarcinomas suggested an early metastatic cancer per se. In 33/40 adenocarcinomas, CK7/CK20 expression pattern, gender, and metastasis sites influenced tissue-specific marker selection. In 23/40 adenocarcinomas, a "putative-immunophenotype" of tissue of origin addressed clinical-diagnostic examinations, identifying 9 early metastatic cancers. Cell lineage markers were used to confirm squamous and neuroendocrine differentiation. Pan-cytokeratins were used to confirm the epithelial nature of poorly differentiated tumors, followed by tissue and cell lineage markers, which identified one melanoma. In total, 47/64 MUOs (73.4%) were confirmed CUP. Molecular analysis, feasible in 37/47 CUPs (78.7%), had no diagnostic impact. Twenty CUP patients, mainly with squamous carcinomas and adenocarcinomas with putative-gynecologic-immunophenotypes, presented with only lymph node metastases and had longer median time to progression and overall survival (< 0.001), compared with patients with other metastatic patterns. We propose a simplified histology-driven workup which could efficiently rule out CUPs and identify early metastatic cancer.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias Primárias Desconhecidas , Humanos , Feminino , Neoplasias Primárias Desconhecidas/diagnóstico , Neoplasias Primárias Desconhecidas/patologia , Imuno-Histoquímica , Adenocarcinoma/metabolismo , Queratinas/análise , Carcinoma de Células Escamosas/diagnóstico , Biomarcadores Tumorais/análise
8.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293286

RESUMO

The tyrosine kinase receptor encoded by the MET oncogene has been extensively studied. Surprisingly, one extracellular domain, PSI, evolutionary conserved between plexins, semaphorins, and integrins, has no established function. The MET PSI sequence contains two CXXC motifs, usually found in protein disulfide isomerases (PDI). Using a scrambled oxidized RNAse enzymatic activity assay in vitro, we show, for the first time, that the MET extracellular domain displays disulfide isomerase activity, abolished by PSI domain antibodies. PSI domain deletion or mutations of CXXC sites to AXXA or SXXS result in a significant impairment of the cleavage of the MET 175 kDa precursor protein, abolishing the maturation of α and ß chains, of, respectively, 50 kDa and 145 kDa, disulfide-linked. The uncleaved precursor is stuck in the Golgi apparatus and, interestingly, is constitutively phosphorylated. However, no signal transduction is observed as measured by AKT and MAPK phosphorylation. Consequently, biological responses to the MET ligand-hepatocyte growth factor (HGF)-such as growth and epithelial to mesenchymal transition, are hampered. These data show that the MET PSI domain is functional and is required for the maturation, surface expression, and biological functions of the MET oncogenic protein.


Assuntos
Fator de Crescimento de Hepatócito , Semaforinas , Fator de Crescimento de Hepatócito/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Ligantes , Transição Epitelial-Mesenquimal , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Semaforinas/genética , Oncogenes , Dissulfetos , Integrinas/genética , Ribonucleases/genética
9.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35636967

RESUMO

MET is an oncogene encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF). Upon ligand binding, MET activates multiple signal transducers, including PI3K/AKT, STAT3, and MAPK. When mutated or amplified, MET becomes a "driver" for the onset and progression of cancer. The most frequent mutations in the MET gene affect the splicing sites of exon 14, leading to the deletion of the receptor's juxtamembrane domain (MET∆14). It is currently believed that, as in gene amplification, MET∆14 kinase is constitutively active. Our analysis of MET in carcinoma cell lines showed that MET∆14 strictly depends on HGF for kinase activation. Compared with wt MET, ∆14 is sensitive to lower HGF concentrations, with more sustained kinase response. Using three different models, we have demonstrated that MET∆14 activation leads to robust phosphorylation of AKT, leading to a distinctive transcriptomic signature. Functional studies revealed that ∆14 activation is predominantly responsible for enhanced protection from apoptosis and cellular migration. Thus, the unique HGF-dependent ∆14 oncogenic activity suggests consideration of HGF in the tumour microenvironment to select patients for clinical trials.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-met , Humanos , Ligantes , Oncogenes , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
10.
Mol Cell Oncol ; 8(5): 1990677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859149

RESUMO

By exploiting an integrated experimental platform based on patient-derived cancer stem cells, we identified a glioblastoma subset characterized by inheritable Erb-B2 Receptor Tyrosine Kinase 3 (ERBB3) overexpression, metabolic dependency on ERBB3 signaling, and liability to ERBB3 targeting. We provide insights on why some glioblastomas may rely on ERBB3 and how to recognize them.

11.
Cell Rep ; 36(4): 109455, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320350

RESUMO

In glioblastoma (GBM), the most frequent and lethal brain tumor, therapies suppressing recurrently altered signaling pathways failed to extend survival. However, in patient subsets, specific genetic lesions can confer sensitivity to targeted agents. By exploiting an integrated model based on patient-derived stem-like cells, faithfully recapitulating the original GBMs in vitro and in vivo, here, we identify a human GBM subset (∼9% of all GBMs) characterized by ERBB3 overexpression and nuclear accumulation. ERBB3 overexpression is driven by inheritable promoter methylation or post-transcriptional silencing of the oncosuppressor miR-205 and sustains the malignant phenotype. Overexpressed ERBB3 behaves as a specific signaling platform for fibroblast growth factor receptor (FGFR), driving PI3K/AKT/mTOR pathway hyperactivation, and overall metabolic upregulation. As a result, ERBB3 inhibition by specific antibodies is lethal for GBM stem-like cells and xenotransplants. These findings highlight a subset of patients eligible for ERBB3-targeted therapy.


Assuntos
Glioblastoma/genética , MicroRNAs/metabolismo , Receptor ErbB-3/metabolismo , Anticorpos/metabolismo , Apoptose , Linhagem Celular Tumoral , Fator 2 de Crescimento de Fibroblastos , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , MicroRNAs/genética , Oligodendroglia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Esferoides Celulares/patologia , Serina-Treonina Quinases TOR/metabolismo
12.
Nat Commun ; 12(1): 2498, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941777

RESUMO

Cancers of unknown primary (CUPs), featuring metastatic dissemination in the absence of a primary tumor, are a biological enigma and a fatal disease. We propose that CUPs are a distinct, yet unrecognized, pathological entity originating from stem-like cells endowed with peculiar and shared properties. These cells can be isolated in vitro (agnospheres) and propagated in vivo by serial transplantation, displaying high tumorigenicity. After subcutaneous engraftment, agnospheres recapitulate the CUP phenotype, by spontaneously and quickly disseminating, and forming widespread established metastases. Regardless of different genetic backgrounds, agnospheres invariably display cell-autonomous proliferation and self-renewal, mostly relying on unrestrained activation of the MAP kinase/MYC axis, which confers sensitivity to MEK inhibitors in vitro and in vivo. Such sensitivity is associated with a transcriptomic signature predicting that more than 70% of CUP patients could be eligible to MEK inhibition. These data shed light on CUP biology and unveil an opportunity for therapeutic intervention.


Assuntos
Carcinogênese/patologia , Metástase Neoplásica/patologia , Neoplasias Primárias Desconhecidas/patologia , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/patologia , Animais , Carcinogênese/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica/genética , Transplante de Neoplasias , Neoplasias Primárias Desconhecidas/genética , Células Tumorais Cultivadas
13.
Sci Transl Med ; 12(555)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759276

RESUMO

Blockade of epidermal growth factor receptor (EGFR) causes tumor regression in some patients with metastatic colorectal cancer (mCRC). However, residual disease reservoirs typically remain even after maximal response to therapy, leading to relapse. Using patient-derived xenografts (PDXs), we observed that mCRC cells surviving EGFR inhibition exhibited gene expression patterns similar to those of a quiescent subpopulation of normal intestinal secretory precursors with Paneth cell characteristics. Compared with untreated tumors, these pseudodifferentiated tumor remnants had reduced expression of genes encoding EGFR-activating ligands, enhanced activity of human epidermal growth factor receptor 2 (HER2) and HER3, and persistent signaling along the phosphatidylinositol 3-kinase (PI3K) pathway. Clinically, properties of residual disease cells from the PDX models were detected in lingering tumors of responsive patients and in tumors of individuals who had experienced early recurrence. Mechanistically, residual tumor reprogramming after EGFR neutralization was mediated by inactivation of Yes-associated protein (YAP), a master regulator of intestinal epithelium recovery from injury. In preclinical trials, Pan-HER antibodies minimized residual disease, blunted PI3K signaling, and induced long-term tumor control after treatment discontinuation. We found that tolerance to EGFR inhibition is characterized by inactivation of an intrinsic lineage program that drives both regenerative signaling during intestinal repair and EGFR-dependent tumorigenesis. Thus, our results shed light on CRC lineage plasticity as an adaptive escape mechanism from EGFR-targeted therapy and suggest opportunities to preemptively target residual disease.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB , Humanos , Recidiva Local de Neoplasia , Neoplasia Residual , Celulas de Paneth , Fenótipo
14.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722178

RESUMO

Previous studies showed that the hepatocyte growth factor (HGF)-Met receptor axis plays long-lasting cardioprotection against doxorubicin anti-cancer therapy. Here, we explored the mechanism(s) underlying the HGF protective effect. DNA damage was monitored by histone H2AX phosphorylation and apoptosis by proteolytic cleavage of caspase 3. In doxorubicin-treated H9c2 cardiomyoblasts, the long-lasting cardioprotection is mediated by activation of the Ras/Raf/Mek/Erk (extracellular signal-regulated kinase 1,2) signaling pathway and requires Stat3 (signal transducer and activator of transcription 3) activation. The HGF protection was abrogated by the Erk1,2 inhibitor, PD98059. This translated into reduced Y705 phosphorylation and impaired nuclear translocation of Stat3, showing crosstalk between Erk1,2 and Stat3 signaling. An array of 29 cytokines, known to activate Stat3, was interrogated to identify the molecule(s) linking the two pathways. The analysis showed a selective increase in expression of the tissue inhibitor of metalloproteinases-1 (Timp1). Consistently, inhibition in cardiomyoblasts of Timp1 translation by siRNAs blunted both Stat3 activation and the cardioprotective effect of HGF. Thus, Timp1 is responsible for the generation of a feed-forward loop of Stat3 activation and helps cardiomyocytes to survive during the genotoxic stress induced by anthracyclines.


Assuntos
Doxorrubicina/efeitos adversos , Fator de Crescimento de Hepatócito/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mioblastos Cardíacos/metabolismo , Fator de Transcrição STAT3/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Linhagem Celular , Doxorrubicina/farmacologia , Flavonoides/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Mioblastos Cardíacos/patologia , Ratos , Fatores de Tempo
15.
EMBO Mol Med ; 12(7): e11756, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32511869

RESUMO

Cancer of unknown primary (CUP) is an obscure disease characterized by multiple metastases in the absence of a primary tumor. No consensus has been reached whether CUPs are simply generated from cancers that cannot be detected or whether they are the manifestation of a still unknown nosological entity. Here, we report the complete expression and genetic analysis of multiple synchronous metastases harvested at warm autopsy of a patient with CUP. The expression profiles were remarkably similar and astonishingly singular. The whole exome analysis yielded a high number of mutations present in all metastases (fully shared), additional mutations (partially shared) accumulated one after another in a series, and few private mutations were unique to each metastasis. Surprisingly, the phylogenetic trajectory linking CUP metastases was atypical, depicting a common "stream", sprouting a series of linear "brooks", at variance from the extensive branched evolution observed in metastases from most cancers of known origin. The distinctive genetic and evolutionary features depicted suggest that CUP is a novel nosological entity.


Assuntos
Mutação , Neoplasias Primárias Desconhecidas/classificação , Neoplasias Primárias Desconhecidas/genética , Análise Mutacional de DNA , Evolução Molecular , Exoma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Primárias Desconhecidas/patologia , Sequenciamento do Exoma
16.
Lab Invest ; 100(10): 1330-1344, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32404931

RESUMO

Glioblastomas (GBM) can be classified into three major transcriptional subgroups (proneural, mesenchymal, classical), underlying different molecular alterations, prognosis, and response to therapy. However, transcriptional analysis is not routinely feasible and assessment of a simplified method for glioblastoma subclassification is required. We propose an integrated molecular and immunohistochemical approach aimed at identifying GBM subtypes in routine paraffin-embedded material. RNA-sequencing analysis was performed on representative samples (n = 51) by means of a "glioblastoma transcriptional subtypes (GliTS) redux" custom gene signature including a restricted number (n = 90) of upregulated genes validated on the TCGA dataset. With this dataset, immunohistochemical profiles, based on expression of a restricted panel of gene classifiers, were integrated by a machine-learning approach to generate a GliTS based on protein quantification that allowed an efficient GliTS assignment when applied to an extended cohort (n = 197). GliTS redux maintained high levels of correspondence with the original GliTS classification using the TCGA dataset. The machine-learning approach designed an immunohistochemical (IHC)-based classification, whose concordance was 79.5% with the transcriptional- based classification, and reached 90% for the mesenchymal subgroup. Distribution and survival of GliTS were in line with reported data, with the mesenchymal subgroup given the worst prognosis. Notably, the algorithm allowed the identification of cases with comparable probability to be assigned to different GliTS, thus falling within overlapping regions and reflecting an extreme heterogeneous phenotype that mirrors the underlying genetic and biological tumor heterogeneity. Indeed, while mesenchymal and classical subgroups were well segregated, the proneural types frequently showed a mixed proneural/classical phenotype, predicted as proneural by the algorithm, but with comparable probability of being assigned to the classical subtype. These cases, characterized by concomitant high expression of EGFR and proneural biomarkers, showed lower survival. Collectively, these data indicate that a restricted panel of highly sensitive immunohistochemical markers can efficiently predict GliTS with high accuracy and significant association with different clinical outcomes.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica , Glioblastoma/classificação , Glioblastoma/metabolismo , Idoso , Algoritmos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Análise por Conglomerados , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Imuno-Histoquímica , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , RNA-Seq
17.
Br J Pharmacol ; 177(13): 3107-3122, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32133617

RESUMO

BACKGROUND AND PURPOSE: Doxorubicin anti-cancer therapy is associated with cardiotoxicity, resulting from DNA damage response (DDR). Hepatocyte growth factor (HGF) protects cardiomyocytes from injury, but its effective use is compromised by low biodistribution. In this study, we have investigated whether the activation of the HGF receptor-encoded by the Met gene-by an agonist monoclonal antibody (mAb) could protect against doxorubicin-induced cardiotoxicity. EXPERIMENTAL APPROACH: The mAb (5 mg·kg-1 ) was injected in vivo into C57BL/6J mice, before doxorubicin (three doses of 7 mg·kg-1 ). Cardiac functions were evaluated through MRI after treatment termination. Heart histological staining and mRNA levels of genes associated with heart failure (Acta1 and Nppa), inflammation (IL-6), and fibrosis (Ctgf, Col1a2, Timp1, and Mmp9) were assessed. MAb (100 nM) was administered in vitro to H9c2 cardiomyoblasts before addition of doxorubicin (25 µM). DDR and apoptosis markers were evaluated by quantitative western blotting, flow cytometry, and immunofluorescence. Stattic was used for pharmacological inactivation of STAT3. KEY RESULTS: In vivo, administration of the mAb alleviated doxorubicin-induced cardiac dysfunction and fibrosis. In vitro, mAb mimicked the response to HGF by (a) inhibiting histone H2AX phosphorylation at S139, (b) quenching the expression of the DNA repair enzyme PARP1, and (c) reducing the proteolytic activation of caspase 3. The MET-driven cardioprotection involved, at least in vitro, the phosphorylation of STAT3. CONCLUSION AND IMPLICATIONS: The MET agonist mAb provides a new tool for cardioprotection against anthracycline cardiotoxicity.


Assuntos
Cardiotoxicidade , Doxorrubicina , Animais , Antibióticos Antineoplásicos/toxicidade , Apoptose , Cardiotoxicidade/metabolismo , Doxorrubicina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Distribuição Tecidual
18.
Crit Rev Oncol Hematol ; 146: 102879, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32005411

RESUMO

Cell-free circulating tumor DNA (ct-DNA) reflecting the whole tumor spatial and temporal heterogeneity currently represents the most promising candidate for liquid biopsy strategy in glioma. Unlike other solid tumors, it is now widely accepted that the best source of ct-DNA for glioma patients is the cerebrospinal fluid, since blood levels are usually low and detectable only in few cases. A cerebrospinal fluid ct-DNA liquid biopsy approach may virtually support all the stages of glioma management, from facilitating molecular diagnosis when surgery is not feasible, to monitoring tumor response, identifying early recurrence, tracking longitudinal genomic evolution, providing a new molecular characterization at recurrence and allowing patient selection for targeted therapies. This review traces the history of ct-DNA liquid biopsy in the field of diffuse malignant gliomas, describes its current status and analyzes what are the future perspectives and pitfalls of this potentially revolutionary molecular tool.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/líquido cefalorraquidiano , DNA Tumoral Circulante/líquido cefalorraquidiano , DNA de Neoplasias/metabolismo , Glioma/líquido cefalorraquidiano , Biópsia Líquida/métodos , Células Neoplásicas Circulantes/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , DNA de Neoplasias/genética , Genes Neoplásicos/genética , Glioblastoma/líquido cefalorraquidiano , Glioblastoma/genética , Glioblastoma/patologia , Glioma/genética , Glioma/patologia , Humanos , Mutação , Gradação de Tumores , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Células Neoplásicas Circulantes/patologia
19.
Front Oncol ; 9: 1546, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010631

RESUMO

Cancer of unknown primary (CUP) is an umbrella term used to classify a heterogeneous group of metastatic cancers based on the absence of an identifiable primary tumor. Clinically, CUPs are characterized by a set of distinct features comprising early metastatic dissemination in an atypical pattern, an aggressive clinical course, poor response to empiric chemotherapy and, consequently, a short life expectancy. Two opposing strategies to change the dismal prognosis for the better are pursued. On the one hand, following the traditional tissue-gnostic approach, more and more sophisticated tissue-of-origin (TOO) classifier assays are employed to push identification of the putative primary to its limits with the clear intent of allowing tumor-site specific treatment. However, robust evidence supporting its routine clinical use is still lacking, notably with two recent randomized clinical trials failing to show a patient benefit of TOO-prediction based site-specific treatment over empiric chemotherapy in CUP. On the other hand, with regards to a tissue-agnostic strategy, precision medicine approaches targeting actionable genomic alterations have already transformed the treatment for many known tumor types. Yet, an unmet need remains for well-designed clinical trials to scrutinize its potential role in CUP beyond anecdotal case reports. In the absence of practice changing results, we believe that the emphasis on finding the presumed unknown primary tumor at all costs, implicit in the term CUP, has biased recent research in the field. Focusing on the distinct clinical features shared by all CUPs, we advocate adopting the term primary metastatic cancer (PMC) to denominate a distinct cancer entity instead. In our view, PMC should be considered the archetype of metastatic disease and as such, despite accounting for a mere 2-3% of malignancies, unraveling the mechanisms at play goes beyond improving the prognosis of patients with PMC and promises to greatly enhance our understanding of the metastatic process and carcinogenesis across all cancer types.

20.
Nat Rev Cancer ; 18(6): 341-358, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29674709

RESUMO

The MET oncogene encodes an unconventional receptor tyrosine kinase with pleiotropic functions: it initiates and sustains neoplastic transformation when genetically altered ('oncogene addiction') and fosters cancer cell survival and tumour dissemination when transcriptionally activated in the context of an adaptive response to adverse microenvironmental conditions ('oncogene expedience'). Moreover, MET is an intrinsic modulator of the self-renewal and clonogenic ability of cancer stem cells ('oncogene inherence'). Here, we provide the latest findings on MET function in cancer by focusing on newly identified genetic abnormalities in tumour cells and recently described non-mutational MET activities in stromal cells and cancer stem cells. We discuss how MET drives cancer clonal evolution and progression towards metastasis, both ab initio and under therapeutic pressure. We then elaborate on the use of MET inhibitors in the clinic with a critical appraisal of failures and successes. Ultimately, we advocate a rationale to improve the outcome of anti-MET therapies on the basis of thorough consideration of the entire spectrum of MET-mediated biological responses, which implicates adequate patient stratification, meaningful biomarkers and appropriate clinical end points.


Assuntos
Evolução Clonal/genética , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Sobrevivência Celular/genética , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Vício Oncogênico/genética , Oncogenes , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA