Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000189

RESUMO

Impaired E-cadherin (Cdh1) functions are closely associated with cellular dedifferentiation, infiltrative tumor growth and metastasis, particularly in gastric cancer. The class-I carcinogen Helicobacter pylori (H. pylori) colonizes gastric epithelial cells and induces Cdh1 shedding, which is primarily mediated by the secreted bacterial protease high temperature requirement A (HtrA). In this study, we used human primary epithelial cell lines derived from gastroids and mucosoids from different healthy donors to investigate HtrA-mediated Cdh1 cleavage and the subsequent impact on bacterial pathogenesis in a non-neoplastic context. We found a severe impairment of Cdh1 functions by HtrA-induced ectodomain cleavage in 2D primary cells and mucosoids. Since mucosoids exhibit an intact apico-basal polarity, we investigated bacterial transmigration across the monolayer, which was partially depolarized by HtrA, as indicated by microscopy, the analyses of the transepithelial electrical resistance (TEER) and colony forming unit (cfu) assays. Finally, we investigated CagA injection and observed efficient CagA translocation and tyrosine phosphorylation in 2D primary cells and, to a lesser extent, similar effects in mucosoids. In summary, HtrA is a crucially important factor promoting the multistep pathogenesis of H. pylori in non-transformed primary gastric epithelial cells and organoid-based epithelial models.


Assuntos
Proteínas de Bactérias , Caderinas , Células Epiteliais , Mucosa Gástrica , Helicobacter pylori , Organoides , Humanos , Caderinas/metabolismo , Organoides/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Antígenos de Bactérias/metabolismo , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Antígenos CD/metabolismo , Estômago/microbiologia , Estômago/patologia , Linhagem Celular , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/microbiologia , Serina Proteases
2.
J Transl Med ; 22(1): 468, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760813

RESUMO

BACKGROUND: Gastric intestinal metaplasia (GIM) is an essential precancerous lesion. Although the reversal of GIM is challenging, it potentially brings a state-to-art strategy for gastric cancer therapeutics (GC). The lack of the appropriate in vitro model limits studies of GIM pathogenesis, which is the issue this work aims to address for further studies. METHOD: The air-liquid interface (ALI) model was adopted for the long-term culture of GIM cells in the present work. This study conducted Immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR), transcriptomic sequencing, and mucoproteomic sequencing (MS) techniques to identify the pathways for differential expressed genes (DEGs) enrichment among different groups, furthermore, to verify novel biomarkers of GIM cells. RESULT: Our study suggests that GIM-ALI model is analog to the innate GIM cells, which thus can be used for mucus collection and drug screening. We found genes MUC17, CDA, TRIM15, TBX3, FLVCR2, ONECUT2, ACY3, NMUR2, and MAL2 were highly expressed in GIM cells, while GLDN, SLC5A5, MAL, and MALAT1 showed down-regulated, which can be used as potential biomarkers for GIM cells. In parallel, these genes that highly expressed in GIM samples were mainly involved in cancer-related pathways, such as the MAPK signal pathway and oxidative phosphorylation signal pathway. CONCLUSION: The ALI model is validated for the first time for the in vitro study of GIM. GIM-ALI model is a novel in vitro model that can mimic the tissue micro-environment in GIM patients and further provide an avenue for studying the characteristics of GIM mucus. Our study identified new markers of GIM as well as pathways associated with GIM, which provides outstanding insight for exploring GIM pathogenesis and potentially other related conditions.


Assuntos
Metaplasia , Humanos , Ar , Modelos Biológicos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Estômago/patologia , Organoides/patologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Regulação Neoplásica da Expressão Gênica , Transcriptoma/genética , Intestinos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA