Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(17): 3653-3665, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623629

RESUMO

Deformable colloids and macromolecules adsorb at interfaces as they decrease the interfacial energy between the two media. The deformability, or softness, of these particles plays a pivotal role in the properties of the interface. In this study, we employ a comprehensive in situ approach, combining neutron reflectometry with molecular dynamics simulations, to thoroughly examine the profound influence of softness on the structure of microgel Langmuir monolayers under compression. Lateral compression of both hard and soft microgel particle monolayers induces substantial structural alterations, leading to an amplified protrusion of the microgels into the aqueous phase. However, a critical distinction emerges: hard microgels are pushed away from the interface, in stark contrast to the soft ones, which remain firmly anchored to it. Concurrently, on the air-exposed side of the monolayer, lateral compression induces a flattening of the surface of the hard monolayer. This phenomenon is not observed for the soft particles as the monolayer is already extremely flat even in the absence of compression. These findings significantly advance our understanding of the key role of softness on both the equilibrium phase behavior of the monolayer and its effect when soft colloids are used as stabilizers of responsive interfaces and emulsions.

2.
Langmuir ; 39(50): 18354-18365, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38059308

RESUMO

Surface-active polymers have important applications as effective and responsive emulsifiers, foaming agents, and coatings. In this contribution, we explore the impact of the polymer architecture on the behavior at oil-water interfaces by comparing different poly(N-isopropylacrylamide) (pNIPAM)-based systems, namely, monolayers of linear and star-shaped macromolecules, ultralow cross-linked, regular cross-linked, and hollow microgels. Compression isotherms were determined experimentally as well as by computer simulations. The latter provides information about the conformational changes of the individual macromolecules as well as the interfacial properties of the monolayer, including the surface structure and the density distribution of an ensemble of interacting macromolecules near an interface. Surprisingly, the isotherms of the linear polymer, of the star polymer, and of the ultralow cross-linked microgel have an identical shape that differs from the isotherms of regular and hollow microgels. We introduced the mass fraction of adsorbed polymer, which gives a measure of the polymer segments contributing to the isotherm in relation to the most flexible architecture, i.e., the linear polymer, and allows a comparison of polymers with different architectures. The data demonstrate that increasing the number of cross-links leads to a significantly lower amount of polymer in the proximity of the interface as the increase in cross-linker reduces the deformability or softness of the polymers at the interface. The volume fraction profiles along the normal to the interface are essentially different in the microgel monolayers as compared to those in the linear and star polymer. The profiles through the microgel contact line and their growth upon initial compression are similar to those of the linear chains. Herewith, the profiles through the center of mass practically do not change upon compression. Therefore, the initial growth in the microgel surface pressure reveals the polymer-like behavior and is related to the deformation of the peripheral part of the microgel. Further compression of the microgel monolayer leads to 3D interactions of the microgels within the aqueous side of the interface and soft colloid-like behavior.

3.
Phys Chem Chem Phys ; 25(4): 2810-2820, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36052753

RESUMO

Micro- and nanogels are widely used to stabilise emulsions and simultaneously implement their responsiveness to the external stimuli. One of the factors that improves the emulsion stability is the nanogel softness. Here, we study how the softest nanogels that can be synthesised with precipitation polymerisation of N-isopropylacrylamide (NIPAM), the ultra-low crosslinked (ULC) nanogels, stabilise oil-in-water emulsions. We show that ULC nanogels can efficiently stabilise emulsions already at low mass concentrations. These emulsions are resistant to droplet flocculation, stable against coalescence, and can be easily broken upon an increase in temperature. The resistance to flocculation of the ULC-stabilised emulsion droplets is similar to the one of emulsions stabilised by linear pNIPAM. In contrast, the stability against coalescence and the temperature-responsiveness closely resemble those of emulsions stabilised by regularly crosslinked pNIPAM nanogels. The reason for this combination of properties is that ULC nanogels can be thought of as colloids in between flexible macromolecules and particles. As a polymer, ULC nanogels can efficiently stretch at the interface and cover it uniformly. As a regularly crosslinked nanogel particle, ULC nanogels protect emulsion droplets against coalescence by providing a steric barrier and rapidly respond to changes in external stimuli thus breaking the emulsion. This polymer-particle duality of ULC nanogels can be exploited to improve the properties of emulsions for various applications, for example in heterogeneous catalysis or in food science.

4.
Phys Rev Lett ; 131(25): 258202, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181345

RESUMO

In situ interfacial rheology and numerical simulations are used to investigate microgel monolayers in a wide range of packing fractions, ζ_{2D}. The heterogeneous particle compressibility determines two flow regimes characterized by distinct master curves. To mimic the microgel architecture and reproduce experiments, an interaction potential combining a soft shoulder with the Hertzian model is introduced. In contrast to bulk conditions, the elastic moduli vary nonmonotonically with ζ_{2D} at the interface, confirming long-sought predictions of reentrant behavior for Hertzian-like systems.

5.
Nat Commun ; 13(1): 3744, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768399

RESUMO

The structural characterization of microgels at interfaces is fundamental to understand both their 2D phase behavior and their role as stabilizers that enable emulsions to be broken on demand. However, this characterization is usually limited by available experimental techniques, which do not allow a direct investigation at interfaces. To overcome this difficulty, here we employ neutron reflectometry, which allows us to probe the structure and responsiveness of the microgels in-situ at the air-water interface. We investigate two types of microgels with different cross-link density, thus having different softness and deformability, both below and above their volume phase transition temperature, by combining experiments with computer simulations of in silico synthesized microgels. We find that temperature only affects the portion of microgels in water, while the strongest effect of the microgels softness is observed in their ability to protrude into the air. In particular, standard microgels have an apparent contact angle of few degrees, while ultra-low cross-linked microgels form a flat polymeric layer with zero contact angle. Altogether, this study provides an in-depth microscopic description of how different microgel architectures affect their arrangements at interfaces, and will be the foundation for a better understanding of their phase behavior and assembly.

6.
Chem Rev ; 122(13): 11675-11700, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35671377

RESUMO

Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.


Assuntos
Nanogéis/química , Polietilenoglicóis/química , Polietilenoimina , Coloides , Polietilenoimina/química , Polímeros/química
7.
Langmuir ; 38(17): 5063-5080, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34586813

RESUMO

Anisotropic, submicrometer-sized particles are versatile systems providing interesting features in creating ordering in two-dimensional systems. Combining hard ellipsoids with a soft shell further enhances the opportunities to trigger and control order and alignment. In this work, we report rich 2D phase behavior and show how softness affects the ordering of anisotropic particles at fluid oil-water interfaces. Three different core-shell systems were synthesized such that they have the same elliptical hematite-silica core but differ with respect to thickness and stiffness of the soft microgel shell. Compression isotherms, the shape of individual core-shell microgels, and their 2D order at a decane-water interface are investigated by means of the Langmuir-Blodgett technique combined with ex-situ atomic force microscopy (AFM) imaging as well as dissipative particle dynamics (DPD) simulations. We show how the softness, size, and anisotropy of the microgel shell affect the side-to-side vs tip-to-tip ordering of anisotropic hybrid microgels as well as the alignment with respect to the direction of compression in the Langmuir trough. A large, soft microgel shell leads to an ordered structure with tip-to-tip alignment directed perpendicular to the direction of compression. In contrast, a thin and harder microgel shell leads to side-to-side ordering orientated parallel to the compression direction. In addition, the thin and harder microgel shell induces clustering of the microgels in the dilute state, indicating the presence of strong capillary interactions. Our findings highlight the relevance of softness for the complex ordering of anisotropic hybrid microgels at interfaces.

8.
Phys Chem Chem Phys ; 23(31): 16754-16766, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34319323

RESUMO

Responsive poly-N-isopropylacrylamide-based microgels are commonly used as model colloids with soft repulsive interactions. It has been shown that the microgel-microgel interaction in solution can be easily adjusted by varying the environmental parameters, e.g., temperature, pH, or salt concentration. Furthermore, microgels readily adsorb to liquid-gas and liquid-liquid interfaces forming responsive foams and emulsions that can be broken on-demand. In this work, we explore the interactions between microgel monolayers at the air-water interface and a hard colloid in the water. Force-distance curves between the monolayer and a silica particle were measured with the Monolayer Particle Interaction Apparatus. The measurements were conducted at different temperatures and lateral compressions, i.e., different surface pressures. The force-distance approach curves display long-range repulsive forces below the volume phase transition temperature of the microgels. Temperature and lateral compression reduce the stiffness of the monolayer. The adhesion increases with temperature and decreases with a lateral compression of the monolayer. When compressed laterally, the interactions between the microgels are hardly affected by temperature, as the directly adsorbed microgel fractions are nearly insensitive to temperature. In contrast, our findings show that the temperature-dependent swelling of the microgel fractions in the aqueous phase strongly influences the interaction with the probe. This is explained by a change in the microgel monolayer from a soft to a hard repulsive interface.

9.
Soft Matter ; 17(25): 6127-6139, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34076021

RESUMO

Herein, we report a systematic study of the adsorption behaviour of short oligo(ethylene glycol) (OEG) chains incorporated into poly(N-isopropylaccrylamide) (PNIPAM) microgels at the dodecane-water interface as a function of the microgel concentration at two different temperatures: 298 and 313 K. The dynamic interfacial tension of the interface for the adsorption of these functional microgels is measured by means of a pendent drop method. We find that similar to pure PNIPAM microgels, the functionalized microgels initially get transported from the bulk to the interface, where they undergo the deformability dependent spreading process, and thus leading to a reduction of interfacial tension. However, the OEG chains significantly influence the dynamic processes of the microgels at the interface, enabling precise control over the interfacial activity. A tuneability of adsorption behaviour that is interpreted in terms of the diversity of structural and morphological features of the microgels, can be achieved by changing the temperature and/or the OEG chain length of the comonomer. While the temperature induced phase transition generally slows down the adsorption kinetics of the microgels, increasing the temperature from 298 to 313 K allows faster reduction of interfacial tension for the adsorption of the microgels with long OEG chains among the studied comonomers, making them a unique interfacially active functional material. Overall, incorporation of OEG chains allows tailoring the interfacial activity of microgels, thereby paving the way for the use of these microgels to act as effective Pickering emulsion stabilizers in a range of applications.

10.
Angew Chem Int Ed Engl ; 60(5): 2280-2287, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459462

RESUMO

The softness of nanohydrogels results in unique properties and recently attracted tremendous interest due to the multi-functionalization of interfaces. Herein, we study extremely soft temperature-sensitive ultra-low cross-linked (ULC) nanogels adsorbed to the solid/water interface by atomic force microscopy (AFM). The ultra-soft nanogels seem to disappear in classical imaging modes since a sharp tip fully penetrates these porous networks with very low forces in the range of steric interactions (ca. 100 pN). However, the detailed evaluation of Force Volume mode measurements allows us to resolve their overall shape and at the same time their internal structure in all three dimensions. The nanogels exhibit an extraordinary disk-like and entirely homogeneous but extremely soft structure-even softer than polymer brushes. Moreover, the temperature-sensitive nanogels can be switched on demand between the ultra-soft and a very stiff state.

11.
Soft Matter ; 17(4): 976-988, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33284940

RESUMO

The formation of smart emulsions or foams whose stability can be controlled on-demand by switching external parameters is of great interest for basic research and applications. An emerging group of smart stabilizers are microgels, which are nano- and micro-sized, three-dimensional polymer networks that are swollen by a good solvent. In the last decades, the influence of various external stimuli on the two-dimensional phase behavior of microgels at air- and oil-water interfaces has been studied. However, the impact of the top-phase itself has been barely considered. Here, we present data that directly address the influence of the top-phase on the microgel properties at interfaces. The dimensions of pNIPAM microgels are measured after deposition from two interfaces, i.e., air- and decane-water. While the total in-plane size of the microgel increases with increasing interfacial tension, the portions or fractions of the microgels situated in the aqueous phase are not affected. We correlate the area microgels occupy to the surface tensions of the interfaces, which allows to estimate an elastic modulus. In comparison to nanoindentation measurements, we observe a larger elastic modulus for the microgels. By combining compression, deposition, and visualization, we show that the two-dimensional phase behavior of the microgel monolayers is not altered, although the microgels have a larger total in-plane size at higher interfacial tension.

12.
Langmuir ; 36(37): 11079-11093, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32845643

RESUMO

The role of electrostatics on the interfacial properties of polyelectrolyte microgels has been discussed controversially in the literature. It is not yet clear if, or how, Coulomb interactions affect their behavior under interfacial confinement. In this work, we combine compression isotherms, atomic force microscopy imaging, and computer simulations to further investigate the behavior of pH-responsive microgels at oil-water interfaces. At low compression, charged microgels can be compressed more than uncharged microgels. The in-plane effective area of charged microgels is found to be smaller in comparison to uncharged ones. Thus, the compressibility is governed by in-plane interactions of the microgels with the interface. At high compression, however, charged microgels are less compressible than uncharged microgels. Microgel fractions located in the aqueous phase interact earlier for charged than for uncharged microgels because of their different swelling perpendicular to the interface. Therefore, the compressibility at high compression is controlled by out-of-plane interactions. In addition, the size of the investigated microgels plays a pivotal role. The charge-dependent difference in compressibility at low compression is only observed for small but not for large microgels, while the behavior at high compression does not depend on the size. Our results highlight the complex nature of soft polymer microgels as compared to rigid colloidal particles. We clearly demonstrate that electrostatic interactions affect the interfacial properties of polyelectrolyte microgels.

13.
ACS Appl Mater Interfaces ; 12(17): 19903-19915, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32248678

RESUMO

Monolayers of polymer microgels adsorbed at the liquid interfaces were studied by dissipative particle dynamics simulations. The results demonstrated that the compressibility of the monolayers can be widely tuned by varying the cross-linking density of the microgels and their (in)compatibility with the immiscible liquids. In particular, the compression of the monolayers (increase of 2D concentration of the microgels) leads to the decrease of their lateral size. Herewith, the shape of the individual soft particles gradually changes from oblate (diluted 2D system) to nearly spherical (compressed monolayer). The polymer concentration profiles plotted along the normal to the interface reveal a nonmonotonous shape with a sharp maximum at the interface. This is a consequence of the shielding effect: saturation of the interface by monomer units of the subchains is driven by minimization of unfavorable contacts between the immiscible liquids and is opposed by elasticity of the network. The decrease of the interfacial tension upon concentration (compression) of the monolayer is quantified. It has been demonstrated that the interfacial tension significantly differs if the solubility of the polymer chains of the microgel network in the liquids changes. These results correlate well with experimental data. The examination of the microgels' crystalline ordering in monolayers demonstrated a nonmonotonous dependency on the compression degree (microgel concentration). Finally, the worsening of the solvent quality leads to the collapse of the microgels in monolayer and nonmonotonous behavior of the interfacial tension.

14.
Soft Matter ; 16(3): 668-678, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31815271

RESUMO

Exploiting soft, adaptive microgels as building blocks for soft materials with controlled and predictable viscoelastic properties is of great interest for both industry and fundamental research. Here the flow properties of different poly(N-isopropylacrylamide) (pNIPAM) microgels are compared: regularly crosslinked versus ultra-low crosslinked (ULC) microgels. The latter are the softest microgels that can be produced via precipitation polymerization. The viscosity of ULC microgel suspensions at low concentrations can be described with models typically used for hard spheres and regularly crosslinked microgels. In contrast, at higher concentrations, ULC microgels show a much softer behavior compared to regularly crosslinked microgels. The increase of the storage modulus with concentration discloses that while for regularly crosslinked microgels the flow properties are mainly determined by the more crosslinked core, for ULC microgels the brush-like interaction is dominant at high packing fractions. Both the flow curves and the increase of the storage modulus with concentration indicates that ULC microgels can form glass and even reach an apparent jammed state despite their extreme softness. In contrast, the analysis of oscillatory frequency sweep measurements show that when approaching the glass transition the ultra-low crosslinked microgels behave as the regularly crosslinked microgels. This is consistent with a recent study showing that in this concentration range the equilibrium phase behavior of these ULC microgels is the one expected for regularly crosslinked microgels.

15.
Langmuir ; 35(51): 16780-16792, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31782927

RESUMO

We investigate soft, temperature-sensitive microgels at fluid interfaces. Though having an isotropic, spherical shape in bulk solution, the microgels become anisotropic upon adsorption. The structure of microgels at interfaces is described by a core-corona morphology. Here, we investigate how changing temperature across the microgel volume phase transition temperature, which leads to swelling/deswelling of the microgels in the aqueous phase, affects the phase behavior within the monolayer. We combine compression isotherms, atomic force microscopy imaging, multiwavelength ellipsometry, and computer simulations. At low compression, the interaction between adsorbed microgels is dominated by their highly stretched corona and the phase behavior of the microgel monolayers is the same. The polymer segments within the interface lose their temperature-sensitivity because of the strong adsorption to the interface. At high compression, however, the portions of the microgels that are located in the aqueous side of the interface become relevant and prevail in the microgel interactions. These portions are able to collapse and, consequently, the isostructural phase transition is altered. Thus, the temperature-dependent swelling perpendicular to the interface ("3D") affects the compressibility parallel to the interface ("2D"). Our results highlight the distinctly different behavior of soft, stimuli-sensitive microgels as compared to rigid nanoparticles.

16.
Langmuir ; 35(46): 14769-14781, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31638406

RESUMO

The structure of poly(N-isopropylacrylamide) (PNIPAM) microgels adsorbed onto a solid substrate is investigated in the dry and hydrated states by means of atomic force microscopy (AFM). We compare two different systems: a regularly cross-linked microgel containing 5 mol % cross-linker and ultra-low cross-linked microgels (ULC) prepared without a dedicated cross-linker. Furthermore, we compare three different adsorption processes: (i) in situ adsorption from solution, (ii) spin-coating, and (iii) Langmuir-Blodgett deposition from an oil-water interface. The results demonstrate that the morphology and the temperature-induced collapse of microgels adsorbed onto a solid substrate are very different for ultra-low cross-linked microgels as compared to regularly cross-linked microgels, despite the fact that their general behavior in solution is very similar. Furthermore, the morphology of ULC microgels can be controlled by the adsorption pathway onto the substrate. Absorbed ULC microgels are strongly deformed when being prepared either by spin-coating or by Langmuir-Blodgett deposition from an oil-water interface. After rehydration, the ULC microgels cannot collapse as entire objects, instead small globules are formed. Such a strong deformation can be avoided by in situ adsorption onto the substrate. Then, the ULC microgels exhibit half-ellipsoidal shapes with a smooth surface in the collapsed state similar to the more cross-linked microgels. As ULC microgels can be selectively trapped either in a more particle-like or in a more polymer-like behavior, coatings with strongly different topographies and properties can be prepared by one and the same ultra-low cross-linked microgel. This provides new opportunities for the development of smart polymeric coatings.

17.
Adv Mater ; 29(43)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29024083

RESUMO

Near-equilibrium stimulus-responsive polymers have been used extensively to introduce morphological variations in dependence of adaptable conditions. Far-less-well studied are triggered transformations at constant conditions. These require the involvement of metastable states, which are either able to approach the equilibrium state after deviation from metastability or can be frozen on returning from nonequilibrium to equilibrium. Such functional nonequilibrium macromolecular systems hold great promise for on-demand transformations, which result in substantial changes in their material properties, as seen for triggered gelations. Herein, a diblock copolymer system consisting of a hydrophilic block and a block that is responsive to both pressure and temperature, is introduced. This species demonstrates various micellar transformations upon leaving equilibrium/nonequilibrium states, which are triggered by a temperature deflection or a temporary application of hydrostatic pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA