RESUMO
We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
Assuntos
COVID-19/imunologia , Biologia Computacional/métodos , Bases de Dados Factuais , SARS-CoV-2/imunologia , Software , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/virologia , Gráficos por Computador , Citocinas/genética , Citocinas/imunologia , Mineração de Dados/estatística & dados numéricos , Regulação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/virologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/virologia , Mapeamento de Interação de Proteínas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Tratamento Farmacológico da COVID-19RESUMO
PURPOSE: To determine the mechanism behind macular bulge height increase in eyes with dome-shaped macula (DSM). DESIGN: Retrospective, observational case series. METHODS: Eyes presenting with DSM followed up for a minimum of 1 year were examined using ocular biometry and spectral-domain optical coherence tomography at baseline and at end of follow-up. Axial length (AL), DSM bulge height, and central and peripheral choroidal thickness (nasal, temporal, superior, and inferior quadrants) were reported. Eyes were categorized into 2 groups for comparison: the "mini-DSM" group (DSM < 100 µm) and the "classic" DSM group (DSM > 100 µm). RESULTS: Fifty-eight eyes (33 patients) were studied: 32 (55%) were classic DSM and 26 (45%) mini-DSM. During the mean follow-up of 51.76 ± 36.01 months, mean AL increased from 26.99 ± 2.94 mm to 27.12 ± 3.09 mm (P = .010) and mean macular bulge height increased from 235.88 ± 282.47 µm to 262.34 ± 317.15 µm (P < .001). DSM height change was significantly higher than AL change (P < .001). Mean peripheral choroidal thickness significantly decreased nasally (P = .008), temporally (P = .026), and inferiorly (P < .001). Mini-DSM eyes exhibited shorter AL (26.17 vs 27.66 mm; P = .027), greater visual acuity (0.169 vs 0.437 logMAR; P = .002), and fewer macular complications compared to classic DSM eyes. CONCLUSIONS: Macular bulge increase in DSM is associated with eye elongation and overall thinning of the peripheral choroid. DSM might result from differential elongation of the eye predominant in the peri-dome region. Mini-DSM (ie, inferior to 100 µm) are characterized by slower evolution, better visual prognosis, and fewer complications compared to "classic" DSM.
Assuntos
Comprimento Axial do Olho/patologia , Macula Lutea/patologia , Doenças Retinianas/etiologia , Adulto , Idoso , Biometria , Corioide/patologia , Dilatação Patológica/diagnóstico por imagem , Dilatação Patológica/etiologia , Dilatação Patológica/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Miopia Degenerativa/complicações , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/fisiopatologia , Estudos Retrospectivos , Microscopia com Lâmpada de Fenda , Tomografia de Coerência Óptica , Acuidade Visual/fisiologiaRESUMO
BACKGROUND & AIMS: The enhanced liver fibrosis (ELF) test has been proposed for the non-invasive assessment of advanced fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). We performed a systematic review to estimate the accuracy of this test against biopsy. METHODS: In this systematic review, we searched MEDLINE, Embase, Web of Science and the Cochrane Library for studies that included patients with NAFLD and that used both liver biopsy (as the reference standard) and the ELF test. Two authors independently screened the references, extracted the data and assessed the quality of included studies. Due to the variation in reported thresholds, we used a multiple thresholds random effects model for meta-analysis (diagmeta R-package). RESULTS: The meta-analysis of 11 studies reporting advanced fibrosis and 5 studies reporting significant fibrosis showed that the ELF test had a sensitivity of >0.90 for excluding fibrosis at a threshold of 7.7. However, as a diagnostic test at high thresholds, the test only achieved specificity and positive predictive value >0.80 in very high prevalence settings (>50%). To achieve a specificity of 0.90 for advanced and significant fibrosis, thresholds of 10.18 (sensitivity: 0.57) and 9.86 (sensitivity: 0.55) were required, respectively. CONCLUSION: The ELF test showed high sensitivity but limited specificity to exclude advanced and significant fibrosis at low cut-offs. The diagnostic performance of the test at higher thresholds was found to be more limited in low-prevalence settings. We conclude that clinicians should carefully consider the likely disease prevalence in their practice setting and adopt suitable test thresholds to achieve the desired performance. LAY SUMMARY: The enhanced liver fibrosis test has been suggested as a non-invasive blood test to aid the diagnosis of severe liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Our study results showed that the test has a high negative predictive value, especially in populations with low disease prevalence (likely encountered in primary care); so, it can exclude advanced fibrosis in patients with NAFLD. However, when prevalence is low, the positive predictive value of the enhanced liver fibrosis test is low, suggesting that additional strategies may be needed to make a positive diagnosis in such settings.
Assuntos
Ácido Hialurônico/sangue , Cirrose Hepática , Fígado , Hepatopatia Gordurosa não Alcoólica , Fragmentos de Peptídeos/sangue , Pró-Colágeno/sangue , Inibidor Tecidual de Metaloproteinase-1/sangue , Algoritmos , Biomarcadores/sangue , Biópsia/métodos , Progressão da Doença , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Valor Preditivo dos Testes , Padrões de ReferênciaRESUMO
AIMS: To test specific mono-agonists to the glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic peptide receptor (GIPR), individually and in combination, in a mouse model of diet-induced non-alcoholic steatohepatitis (NASH) and fibrosis in order to decipher the contribution of their activities and potential additive effects to improving systemic and hepatic metabolism. MATERIALS AND METHODS: We induced NASH by pre-feeding C57BL/6J mice a diet rich in fat, fructose and cholesterol for 36 weeks. This was followed by 8 weeks of treatment with the receptor-specific agonists 1-GCG (20 µg/kg twice daily), 2-GLP1 (3 µg/kg twice daily) or 3-GIP (30 µg/kg twice daily), or the dual (1 + 2) or triple (1 + 2 + 3) combinations thereof. A dual GLP-1R/GCGR agonistic peptide, 4-dual-GLP1/GCGR (30 µg/kg twice daily), and liraglutide (100 µg/kg twice daily) were included as references. RESULTS: Whereas low-dose 1-GCG or 3-GIP alone did not influence body weight, liver lipids and histology, their combination with 2-GLP1 provided additional weight loss, reduction in liver triglycerides and improvement in histological disease activity score. Notably, 4-dual-GLP-1R/GCGR and the triple combination of selective mono-agonists led to a significantly stronger reduction in the histological non-alcoholic fatty liver disease activity score compared to high-dose liraglutide, at the same extent of body weight loss. CONCLUSIONS: GCGR and GIPR agonism provide additional, body weight-independent improvements on top of GLP-1R agonism in a murine model of manifest NASH with fibrosis.
Assuntos
Incretinas , Hepatopatia Gordurosa não Alcoólica , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1 , Incretinas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores de GlucagonRESUMO
Background and Aims: To better understand nonalcoholic steatohepatitis (NASH) disease progression and to evaluate drug targets and compound activity, we undertook the development of an in vitro 3D model to mimic liver architecture and the NASH environment. Methods: We have developed an in vitro preclinical 3D NASH model by coculturing primary human hepatocytes, human stellate cells, liver endothelial cells and Kupffer cells embedded in a hydrogel of rat collagen on a 96-well plate. A NASH-like environment was induced by addition of medium containing free fatty acids and tumor necrosis factor-α. This model was then characterized by biochemical, imaging and transcriptomics analyses. Results: We succeeded in defining suitable culture conditions to maintain the 3D coculture for up to 10 days in vitro, with the lowest level of steatosis and reproducible low level of inflammation and fibrosis. NASH disease was induced with a custom medium mimicking NASH features. The cell model exhibited the key NASH disease phenotypes of hepatocyte injury, steatosis, inflammation, and fibrosis. Hepatocyte injury was highlighted by a decrease of CYP3A4 expression and activity, without loss of viability up to day 10. Moreover, the model was able to stimulate a stable inflammatory and early fibrotic environment, with expression and secretion of several cytokines. A global gene expression analysis confirmed the NASH induction. Conclusions: This is a new in vitro model of NASH disease consisting of four human primary cell-types that exhibits most features of the disease. The 10-day cell viability and cost effectiveness of the model make it suitable for medium throughput drug screening and provide attractive avenues to better understand disease physiology and to identify and characterize new drug targets.
RESUMO
Multiple sclerosis (MS) is an autoimmune disease characterized by CNS inflammation leading to demyelination and axonal damage. IFN-ß is an established treatment for MS; however, up to 30% of IFN-ß-treated MS patients develop neutralizing antidrug antibodies (nADA), leading to reduced drug bioactivity and efficacy. Mechanisms driving antidrug immunogenicity remain uncertain, and reliable biomarkers to predict immunogenicity development are lacking. Using high-throughput flow cytometry, NOTCH2 expression on CD14+ monocytes and increased frequency of proinflammatory monocyte subsets were identified as baseline predictors of nADA development in MS patients treated with IFN-ß. The association of this monocyte profile with nADA development was validated in 2 independent cross-sectional MS patient cohorts and a prospective cohort followed before and after IFN-ß administration. Reduced monocyte NOTCH2 expression in nADA+ MS patients was associated with NOTCH2 activation measured by increased expression of Notch-responsive genes, polarization of monocytes toward a nonclassical phenotype, and increased proinflammatory IL-6 production. NOTCH2 activation was T cell dependent and was only triggered in the presence of serum from nADA+ patients. Thus, nADA development was driven by a proinflammatory environment that triggered activation of the NOTCH2 signaling pathway prior to first IFN-ß administration.
Assuntos
Hipersensibilidade a Drogas/diagnóstico , Interferon beta/efeitos adversos , Monócitos/metabolismo , Esclerose Múltipla/tratamento farmacológico , Receptor Notch2/metabolismo , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Biomarcadores/análise , Biomarcadores/metabolismo , Estudos Transversais , Hipersensibilidade a Drogas/sangue , Hipersensibilidade a Drogas/imunologia , Feminino , Humanos , Interferon beta/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Receptor Notch2/análiseRESUMO
Compound 15 (SAR107375), a novel potent dual thrombin and factor Xa inhibitor resulted from a rational optimization process. Starting from compound 14, with low factor Xa and modest anti-thrombin inhibitory activities (IC50's of 3.5 and 0.39 µM, respectively), both activities were considerably improved, notably through the incorporation of a neutral chlorothiophene P1 fragment and tuning of P2 and P3-P4 fragments. Final optimization of metabolic stability with microsomes led to the identification of 15, which displays strong activity in vitro vs factor Xa and thrombin (with Ki's of 1 and 8 nM, respectively). In addition 15 presents good selectivity versus related serine proteases (roughly 300-fold), including trypsin (1000-fold), and is very active (0.39 µM) in the thrombin generation time (TGT) coagulation assay in human platelet rich plasma (PRP). Potent in vivo activity in a rat model of venous thrombosis following iv and, more importantly, po administration was also observed (ED50 of 0.07 and 2.8 mg/kg, respectively). Bleeding liability was reduced in the rat wire coil model, more relevant to arterial thrombosis, with 15 (blood loss increase of 2-fold relative to the ED80 value) compared to rivaroxaban 2 and dabigatran etexilate 1a.
Assuntos
Anticoagulantes/síntese química , Inibidores do Fator Xa , Fibrinolíticos/síntese química , Piperazinas/síntese química , Sulfonamidas/síntese química , Trombina/antagonistas & inibidores , Animais , Anticoagulantes/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Fibrinolíticos/farmacologia , Humanos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Ratos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Trombose Venosa/tratamento farmacológicoRESUMO
Antibodies and prorenin mutants have long been used to structurally characterize prorenin, the inactive proenzyme form of renin. They were designed on the basis of homology models built using other aspartyl protease proenzyme structures since no structure was available for prorenin. Here, we present the first X-ray structure of a prorenin. The current structure of prorenin reveals that, in this zymogene, the active site of renin is blocked by the N-terminal residues of the mature version of the renin molecule, which are, in turn, covered by an Ω-shaped prosegment. This prevents access of substrates to the active site. The departure of the prosegment on activation induces an important global conformational change in the mature renin molecule with respect to prorenin: similar to other related enzymes such as pepsin or gastricsin, the segment that constitutes the N-terminal ß-strand in renin is displaced from the renin active site by about 180° straight into the position that corresponds to the N-terminal ß-strand of the prorenin prosegment. This way, the renin active site will become completely exposed and capable of carrying out its catalytic functions. A unique inactivation mechanism is also revealed, which does not make use of a lysine against the catalytic aspartates, probably in order to facilitate pH-independent activation [e.g., by the (pro)renin receptor].
Assuntos
Renina/química , Renina/metabolismo , Sequência de Aminoácidos , Anticorpos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Humanos , Lisina , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Renina/genética , Receptor de Pró-ReninaRESUMO
The selective inhibition of the aspartyl protease renin is of high interest to control hypertension and associated cardiovascular risk factors. Following on preceding contributions, we report herein on the optimization of two series of azaindoles to arrive at potent and non-chiral renin inhibitors. The previously discovered azaindole scaffold was further explored by structure-based drug design in combination with parallel synthesis. This results in the identification of novel 5- or 7-azaindole derivatives with remarkable potency for renin inhibition. The best compounds on both series show IC(50) values between 3 and 8nM.
Assuntos
Compostos Aza/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Renina/antagonistas & inibidores , Compostos Aza/síntese química , Compostos Aza/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Indóis/síntese química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Renina/metabolismo , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
The control of hypertension and associated cardiovascular risk factors is possible by selective inhibition of the aspartyl protease renin due to its unique position in the renin-angiotensin system. Starting from a previously disclosed series of potent and nonchiral indole-3-carboxamides, we further explored this motif by structure-based drug design guided by X-ray crystallography in combination with efficient parallel synthesis. This resulted in the discovery of 4- or 6-azaindole derivatives with remarkable potency for renin inhibition. The best compound from these series showed an IC(50) value of 1.3 nM.
Assuntos
Amidas/farmacologia , Inibidores Enzimáticos/farmacologia , Renina/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Renina/metabolismo , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Selective inhibition of the aspartyl protease renin has gained attraction as an interesting approach to control hypertension and associated cardiovascular risk factors given its unique position in the renin-angiotensin system. Using a combination of high-throughput screening, parallel synthesis, X-ray crystallography and structure-based design, we identified and optimized a novel series of potent and non-chiral indole-3-carboxamides with remarkable potency for renin. The most potent compound 5k displays an IC(50) value of 2nM.
Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Renina/antagonistas & inibidores , Cristalografia por Raios X , Desenho de Fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Conformação Proteica , Renina/química , Relação Estrutura-AtividadeRESUMO
Three novel, N-acyl-pro-pyrrolidine-type, inhibitors of prolyl oligopeptidase (POP) with nanomolar activities were synthesized and their binding analyzed to the host enzyme in the light of X-ray diffraction and molecular modeling studies. We were interested in the alteration in the binding affinity at the S3 site as a function of the properties of the N-terminal group of the inhibitors. Our studies revealed that, for inhibitors with flat aromatic terminal groups, the optimal length of the linker chain is three C-C bonds, but this increases to four C-C bonds if there is a bulky group in the terminal position. Molecular dynamics calculations indicate that this is due to the better fit into the binding pocket. A 4-fold enhancement of the inhibitor activity upon replacement of the 4-CH2 group of the proline ring by CF2 is a consequence of a weak hydrogen bond formed between the fluorine atom and the hydroxy group of Tyr473 of the host enzyme. There is notably good agreement between the calculated and experimental free energies of binding; the average error in the IC50 values is around 1 order of magnitude.
Assuntos
Pirrolidinas/farmacologia , Serina Endopeptidases/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Sítios de Ligação/efeitos dos fármacos , Simulação por Computador , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ligação de Hidrogênio , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Prolil Oligopeptidases , Pirrolidinas/síntese química , Pirrolidinas/química , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Structures of chiral and achiral alcohol-O,O'-dibenzoyl-(2R,3R)-tartaric acid (DBTA) complexes were investigated by single-crystal X-ray diffraction (seven new crystal structures were determined). The complexes contain DBTA and chiral alcohol in 1:1, DBTA and achiral alcohol in 1:2 host-guest stoichiometry. The hydrogen bonding structures of chiral alcohol-DBTA and achiral alcohol-DBTA complexes are different, but within a subclass they are isostructural ones.
RESUMO
SSR182289A 1 is the result of a rational optimisation process leading to an orally active thrombin inhibitor. The structure incorporates an original 2-(acetylamino)-[1,1'-biphenyl]-3-sulfonyl N-terminal motif, a central l-Arg surrogate carrying a weakly basic 3-amino-pyridine, and an unusual 4-difluoropiperidine at the C-terminus. Its synthesis is convergent and palladium catalysis has been employed for the construction of the key C-C bonds: Suzuki coupling for the bis-aryl fragment and Sonogashira reaction for the delta- bond of the central amino-acid chain. The compound is a potent inhibitor of thrombin's activities in vitro and demonstrates potent oral anti-thrombotic potencies in three rat models of thrombosis. The observed in vitro potency could be rationalized through the examination of the interactions within the SSR182289A 1 - thrombin crystal structure. SSR182289A 1, has been therefore selected for further development.
Assuntos
Aminopiridinas/farmacologia , Sulfonamidas/farmacologia , Trombina/antagonistas & inibidores , Administração Oral , Aminopiridinas/síntese química , Animais , Azetidinas/farmacologia , Benzilaminas , Coagulação Sanguínea/efeitos dos fármacos , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Ligação de Hidrogênio , Masculino , Modelos Moleculares , Estrutura Molecular , Agregação Plaquetária/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Trombina/fisiologia , Trombose/tratamento farmacológico , Trombose/fisiopatologia , Trombose/prevenção & controleRESUMO
The crystal structure of S189D rat chymotrypsin have been determined (resolution 2.55A) and compared, together with D189S rat trypsin to wild-type structures to examine why these single mutations resulted in poorly active, non-specific enzymes instead of converting the specificities of trypsin and chymotrypsin into each other. Both mutants have stable structure but suffer from a surprisingly large number of serious deformations. These are restricted to the activation domain, mainly to the substrate-binding region and are larger in S189D chymotrypsin. A wild-type substrate-binding mode in the mutants is disfavored by substantial displacements of the Cys191-Cys220 disulfide and loop segments 185-195 (loop C2/D2) and 217-224 (loop E2/F2) at the specificity site. As a consequence, the substrate-binding clefts become wider and more solvent-accessible in the middle third and occluded in the lower third. Interestingly, while the Ser189 residue in D189S trypsin adopts a chymotrypsin-like conformation, the Asp189 residue in S189D chymotrypsin is turned out toward the solvent. The rearrangements in D189S trypsin are at the same sites where trypsin and trypsinogen differ and, in S189D chymotrypsin, the oxyanion hole as well as the salt-bridge between Asp194 and the N-terminal of Ile16 are missing as in chymotrypsinogen. Despite these similarities, the mutants do not have zymogen conformation. The Ser189Asp and Asp189Ser substitutions are structurally so disruptive probably because the stabilization of such a different specificity site polarities as those after the removal or introduction of a charged residue are beyond the capability of the wild-type conformation of the substrate-binding region.
Assuntos
Quimotripsina/química , Quimotripsina/metabolismo , Tripsina/química , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Quimotripsina/genética , Cristalografia por Raios X , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Estabilidade Enzimática , Técnicas In Vitro , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Tripsina/genéticaRESUMO
Heating (20R)-3beta,20,26-trihydroxy-27-norcholest-5-en-22-one (1) with hydrazine and KOH at 160 degrees C completely converted the steroid to a diastereoisomeric mixture of the new (20R,22RS)-27-norcholest-5-ene-3beta,20,22-triols (2). Exclusive formation of 2 suggests that the expected Wolff-Kishner reduction to a methylene group at the C-22 ketone in 1 was diverted to the C-26 position by a 1,5-hydride shift. All attempts under acid conditions failed to produce a C-22 phenyl hydrazone from 1. However, reaction of 1 was reacted with phenylhydrazine in hot KOH, gave the C-26 phenylhydrazone 4 as the sole product. Evidently, under alkaline conditions, first a hydride ion undergoes an intramolecular transfer from the C-26 CH(2)OH group to the C-22 ketone in 1, and then the phenylhydrazine traps the newly formed aldehyde. To examine this hypothesis, we constructed computer-simulated transition state models from quantum chemical calculations and then compared data from these models with NMR measurements of the reaction mixtures containing 2. The NMR data showed that the C-22 diastereoisomers of 2 are formed in a nearly 1:1 ratio exactly as predicted from the energy-optimized transition states, which were calculated for intramolecular 1,5-hydride shifts that produced each of the two C-22 diastereoisomers. Accordingly, these results support the hypothesis that an intramolecular 1,5-hydride shift mechanism promotes complete conversion of 1 to 2 under classical Wolff-Kishner reduction conditions.