Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Sci ; 316: 111177, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35151443

RESUMO

In ripening tomato fruits, the leaf-specific carotenoids biosynthesis mediated by phytoene synthase 2 (PSY2) is replaced by a fruit-specific pathway by the expression of two chromoplast-specific genes: phytoene synthase 1 (PSY1) and lycopene-ß-cyclase (CYCB). Though both PSY1 and PSY2 genes express in tomato fruits, the functional role of PSY2 is not known. To decipher whether PSY2-mediated carotenogenesis operates in ripening fruits, we blocked the in vivo activity of lycopene-ß-cyclases in fruits of several carotenoids and ripening mutants by CPTA (2-(4-Chlorophenylthio)triethylamine hydrochloride), an inhibitor of lycopene-ß-cyclases. The CPTA-treatment induced accumulation of lycopene in leaves, immature-green and ripening fruits. Even in psy1 mutants V7 and r that are deficient in fruit-specific carotenoid biosynthesis, CPTA triggered lycopene accumulation but lowered the abscisic acid level. Differing from fruit-specific carotenogenesis, CPTA-treated V7 and r mutant fruits accumulated lycopene but not phytoene and phytofluene. The lack of phytoene and phytofluene accumulation was reminiscent of PSY2-mediated leaf-like carotenogenesis, where phytoene and phytofluene accumulation is never seen. The lycopene accumulation was associated with the partial transformation of chloroplasts to chromoplasts bearing thread-like structures. Our study uncovers the operation of a parallel carotenogenesis pathway mediated by PSY2 that provides precursors for abscisic acid biosynthesis in ripening tomato fruits.


Assuntos
Solanum lycopersicum , Ácido Abscísico , Carotenoides , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética
2.
Mol Biol Rep ; 47(11): 8615-8627, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33098552

RESUMO

Rice (Oryza sativa L.) yield enhancement is one of the prime objectives of plant breeders. Elucidation of the inheritance of grain weight, a key yield component trait, is of paramount importance for raising the yield thresholds in rice. In the present investigation, we employed Next-Generation Sequencing based QTL-seq approach to identify major genomic regions associated with grain weight using mapping populations derived from a cross between BPT5204 and MTU3626. QTL-seq analysis identified three grain weight quantitative trait loci (QTL) viz., qGW1 (35-40 Mb), qGW7 (10-18 Mb), and qGW8 (2-5 Mb) on chromosomes 1, 7 and 8, respectively and all are found to be novel. Further, qGW8 was confirmed through conventional QTL mapping in F2, F3 and BC1F2 populations and found to explain the phenotypic variance of 17.88%, 16.70% and 15.00%, respectively, indicating a major QTL for grain weight. Based on previous reports, two candidate genes in the qGW8 QTL were predicted i.e., LOC_Os08g01490 (Cytochrome P450), and LOC_Os08g01680 (WD domain, G-beta repeat domain containing protein) and through in silico analysis they were found to be highly expressed in reproductive organs during different stages of grain development. Here, we have demonstrated that QTL-seq is one of the rapid approaches to uncover novel QTLs controlling complex traits. The candidate genes identified in the present study undoubtedly enhance our understanding of the mechanism and inheritance of the grain weight. These candidate genes can be exploited for yield enhancement after confirmation through complementary studies.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Cromossomos de Plantas/genética , DNA de Plantas/genética , Polimorfismo de Nucleotídeo Único
3.
Sci Rep ; 9(1): 8192, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160789

RESUMO

In rice (Oryza sativa L.), during the course of domestication, numerous beneficial alleles remain untapped in the progenitor wild species and landraces. This study aims at uncovering these promising alleles of six key genes influencing the yield, such as DEP1, Ghd7, Gn1a, GS3, qSW5 and sd1 by targeted resequencing of the 200 rice genotypes. In all, 543 nucleotide variations including single nucleotide polymorphisms and insertion and deletion polymorphisms were identified from the targeted genes. Of them, 225 were novel alleles, which identified in the present study only and 91 were beneficial alleles that showed significant association with the yield traits. Besides, we uncovered 128 population-specific alleles with indica being the highest of 79 alleles. The neutrality tests revealed that pleiotropic gene, Ghd7 and major grain size contributing gene, GS3 showed positive and balanced selection, respectively during the domestication. Further, the haplotype analysis revealed that some of the rice genotypes found to have rare haplotypes, especially the high yielding variety, BPT1768 has showed maximum of three genes such as Gn1a-8, qSW5-12 and GS3-29. The rice varieties with novel and beneficial alleles along with the rare haplotypes identified in the present study could be of immense value for yield improvement in the rice breeding programs.


Assuntos
Alelos , Genes de Plantas , Oryza/genética , Cromossomos de Plantas , Variação Genética , Genótipo , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
4.
Front Plant Sci ; 7: 1714, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965677

RESUMO

Nitric oxide (NO) plays a pivotal role in growth and disease resistance in plants. It also acts as a secondary messenger in signaling pathways for several plant hormones. Despite its clear role in regulating plant development, its role in fruit development is not known. In an earlier study, we described a short root (shr) mutant of tomato, whose phenotype results from hyperaccumulation of NO. The molecular mapping localized shr locus in 2.5 Mb region of chromosome 9. The shr mutant showed sluggish growth, with smaller leaves, flowers and was less fertile than wild type. The shr mutant also showed reduced fruit size and slower ripening of the fruits post-mature green stage to the red ripe stage. Comparison of the metabolite profiles of shr fruits with wild-type fruits during ripening revealed a significant shift in the patterns. In shr fruits intermediates of the tricarboxylic acid (TCA) cycle were differentially regulated than WT indicating NO affected the regulation of TCA cycle. The accumulation of several amino acids, particularly tyrosine, was higher, whereas most fatty acids were downregulated in shr fruits. Among the plant hormones at one or more stages of ripening, ethylene, Indole-3-acetic acid and Indole-3-butyric acid increased in shr, whereas abscisic acid declined. Our analyses indicate that the retardation of fruit growth and ripening in shr mutant likely results from the influence of NO on central carbon metabolism and endogenous phytohormones levels.

5.
Plant Physiol ; 164(4): 2030-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24515830

RESUMO

In higher plants, blue light (BL) phototropism is primarily controlled by the phototropins, which are also involved in stomatal movement and chloroplast relocation. These photoresponses are mediated by two phototropins, phot1 and phot2. Phot1 mediates responses with higher sensitivity than phot2, and phot2 specifically mediates chloroplast avoidance and dark positioning responses. Here, we report the isolation and characterization of a Nonphototropic seedling1 (Nps1) mutant of tomato (Solanum lycopersicum). The mutant is impaired in low-fluence BL responses, including chloroplast accumulation and stomatal opening. Genetic analyses show that the mutant locus is dominant negative in nature. In dark-grown seedlings of the Nps1 mutant, phot1 protein accumulates at a highly reduced level relative to the wild type and lacks BL-induced autophosphorylation. The mutant harbors a single glycine-1484-to-alanine transition in the Hinge1 region of a phot1 homolog, resulting in an arginine-to-histidine substitution (R495H) in a highly conserved A'α helix proximal to the light-oxygen and voltage2 domain of the translated gene product. Significantly, the R495H substitution occurring in the Hinge1 region of PHOT1 abolishes its regulatory activity in Nps1 seedlings, thereby highlighting the functional significance of the A'α helix region in phototropic signaling of tomato.


Assuntos
Genes Dominantes , Mutação/genética , Fototropinas/química , Fototropinas/genética , Transdução de Sinais , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Cloroplastos/metabolismo , Cotilédone/fisiologia , Cotilédone/efeitos da radiação , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Luz , Solanum lycopersicum/fisiologia , Solanum lycopersicum/efeitos da radiação , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fenótipo , Fototropinas/metabolismo , Fototropismo/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos da radiação
6.
Methods Mol Biol ; 918: 97-116, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22893288

RESUMO

During many biological experiments voluminous data is acquired, which can be best collected with -portable data acquisition devices and later analyzed with a personal computer (PC). Public domain software catering to data acquisition and analysis is currently limited. The necessity of phenotyping large plant populations led to the development of the application "PHENOME" to manage the data. PHENOME allows acquisition of phenotypic data using a personal digital assistant (PDA) with a built-in barcode scanner. The acquired data can be exported to a customized database on a PC for further analysis and cataloging. PHENOME can be used for a variety of applications, for example high-throughput phenotyping of a mutagenized or mapping population, or phenotyping of several individuals in one or more ecological niches.


Assuntos
Computadores , Fenótipo , Fotografação/instrumentação , Solanum lycopersicum/anatomia & histologia , Linguagens de Programação , Estatística como Assunto
7.
Plant Methods ; 6(1): 3, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20181012

RESUMO

BACKGROUND: TILLING (Targeting Induced Local Lesions in Genomes) is a reverse genetics procedure for identifying point mutations in selected gene(s) amplified from a mutagenized population using high-throughput detection platforms such as slab gel electrophoresis, capillary electrophoresis or dHPLC. One essential pre-requisite for TILLING is genomic DNA isolation from a large population for PCR amplification of selected target genes. It also requires multiplexing of genomic DNA isolated from different individuals (pooling) in typically 8-fold pools, for mutation scanning, and to minimize the number of PCR amplifications, which is a strenuous and long-drawn-out work. We describe here a simplified procedure of multiplexing, NEATTILL (Nucleic acid Extraction from Arrayed Tissue for TILLING), which is rapid and equally efficient in assisting mutation detection. RESULTS: The NEATTILL procedure was evaluated for the tomato TILLING platform and was found to be simpler and more efficient than previously available methods. The procedure consisted of pooling tissue samples, instead of nucleic acid, from individual plants in 96-well plates, followed by DNA isolation from the arrayed samples by a novel protocol. The three variants of the NEATTILL procedure (vast, in-depth and intermediate) can be applied across various genomes depending upon the population size of the TILLING platform. The 2-D pooling ensures the precise confirmation of the coordinates of the positive mutant line while scanning complementary plates. Choice of tissue for arraying and nucleic acid isolation is discussed in detail with reference to tomato. CONCLUSION: NEATTILL is a convenient procedure that can be applied to all organisms, the genomes of which have been mutagenized and are being scanned for multiple alleles of various genes by TILLING for understanding gene-to-phenotype relationships. It is a time-saving, less labour intensive and reasonably cost-effective method. Tissue arraying can cut costs by up to 90% and minimizes the risk of exposing the DNA to nucleases. Before arraying, different tissues should be evaluated for DNA quality, as the case study in tomato showed that cotyledons rather than leaves are better suited for DNA isolation. The protocol described here for nucleic acid isolation can be generally adapted for large-scale projects such as insertional mutagenesis, transgenic confirmation, mapping and fingerprinting which require isolation of DNA from large populations.

8.
Plant Methods ; 5: 18, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20003250

RESUMO

BACKGROUND: The data generated during a course of a biological experiment/study can be sometimes be massive and its management becomes quite critical for the success of the investigation undertaken. The accumulation and analysis of such large datasets often becomes tedious for biologists and lab technicians. Most of the current phenotype data acquisition management systems do not cater to the specialized needs of large-scale data analysis. The successful application of genomic tools/strategies to introduce desired traits in plants requires extensive and precise phenotyping of plant populations or gene bank material, thus necessitating an efficient data acquisition system. RESULTS: Here we describe newly developed software "PHENOME" for high-throughput phenotyping, which allows researchers to accumulate, categorize, and manage large volume of phenotypic data. In this study, a large number of individual tomato plants were phenotyped with the "PHENOME" application using a Personal Digital Assistant (PDA) with built-in barcode scanner in concert with customized database specific for handling large populations. CONCLUSION: The phenotyping of large population of plants both in the laboratory and in the field is very efficiently managed using PDA. The data is transferred to a specialized database(s) where it can be further analyzed and catalogued. The "PHENOME" aids collection and analysis of data obtained in large-scale mutagenesis, assessing quantitative trait loci (QTLs), raising mapping population, sampling of several individuals in one or more ecological niches etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA