Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 9: 323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666586

RESUMO

Insects use sensitive olfactory systems to detect relevant host volatiles and avoid unsuitable hosts in a complex environmental odor landscape. Insects with short lifespans, such as gall midges (Diptera: Cecidomyiidae), are under strong selection pressure to detect and locate suitable hosts for their offspring in a short period of time. Ephemeral gall midges constitute excellent models for investigating the role of olfaction in host choice, host shift, and speciation. Midges mate near their site of emergence and females migrate in order to locate hosts for oviposition, thus females are expected to be more responsive to olfactory cues emitted by the host compared to males. In this study, we explored the correlation between host choice and the function of the peripheral olfactory system in 12 species of gall midges, including species with close phylogenetic relationships that use widely different host plants and more distantly related gall midge species that use similar hosts. We tested the antennal responses of males and females of the 12 species to a blend of 45 known insect attractants using coupled gas chromatographic-electroantennographic detection. When the species-specific response profiles of the gall midges were compared to a newly generated molecular-based phylogeny, we found they responded to the compounds in a sex- and species-specific manner. We found the physiological response profiles of species that use annual host plants, and thus have to locate their host every season, are similar for species with similar hosts despite large phylogenetic distances. In addition, we found closely related species with perennial hosts demonstrated odor response profiles that were consistent with their phylogenetic history. The ecology of the gall midges affects the tuning of the peripheral olfactory system, which in turn demonstrates a correlation between olfaction and speciation in the context of host use.

2.
AoB Plants ; 5: plt005, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23467832

RESUMO

While carnivores are known to be attracted to herbivore-induced plant volatiles, little is known about how such volatiles may affect the behaviour of omnivorous predators that may use both plants and herbivores as food. Here, we examine how systemically produced plant volatiles, in response to local herbivore damage, differentially attract a key omnivorous predator, Anthocoris nemorum (Heteroptera: Anthocoridae), to single clones of three species of Salix: S. viminalis, S. dasyclados and S. cinerea. The profiles of the plant volatiles produced were found to vary among Salix clones and between herbivore-damaged and intact plants. Anthocoris nemorum was attracted to the volatiles released from undamaged plants of all three species, but most strongly to a native S. cinerea clone. Plants damaged by the herbivorous leaf beetle Phratora vulgatissima (Coleoptera: Chrysomelidae) were generally more attractive than undamaged plants, with A. nemorum responding to systemic changes in the damaged plants where the experimental design specifically excluded volatiles released from the actual site of damage. When comparing damaged plants, the S. dasyclados clone was more attractive to A. nemorum than the S. viminalis clone-a somewhat surprising result since this Salix clone is considered relatively resistant to P. vulgatissima, and hence offers a limited amount of prey. Our experiments highlight that both constitutive and induced plant volatiles play a role in omnivore attraction, and this emphasizes the importance of considering odours of released volatiles when cropping and breeding Salix for increased resistance to herbivores.

3.
J Chem Ecol ; 38(1): 2-22, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22215563

RESUMO

The family of cecidomyiid midges (Diptera: Cecidomyiidae) exhibits diversified patterns of life history, behavior, host range, population dynamics and other ecological traits. Those that feed on plants include many important agricultural pests; most cultivated plants are attacked by at least one midge species. Several features of the reproductive biology of cecidomyiid midges point to an important role for chemical communication, with this topic last reviewed comprehensively 12 years ago. Here, we review progress on identification of sex pheromones, chemicals involved in location of host plants, the neurophysiology of reception of volatile chemicals, and application of semiochemicals to management of pest species of cecidomyiid midges that has occurred during the last decade. We hope this review will stimulate and sustain further research in these fields.


Assuntos
Dípteros/química , Dípteros/metabolismo , Fenômenos Ecológicos e Ambientais , Comunicação Animal , Animais , Dípteros/fisiologia , Odorantes , Controle Biológico de Vetores , Atrativos Sexuais/análise , Atrativos Sexuais/biossíntese , Atrativos Sexuais/química , Atrativos Sexuais/metabolismo
4.
J Insect Physiol ; 56(9): 1306-14, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20416312

RESUMO

This study describes the morphology and function of the antennal sensilla in two gall midge species, Contarinia nasturtii and Mayetiola destructor, where multi-component sex pheromones have been identified. Both species possess sensilla trichodea, s. coeloconica, s. chaetica and s. circumfila. Sensilla circumfila, which consist of several sensilla that bifurcate and fuse into one structure, are unique for the gall midges. In C. nasturtii s. circumfila are sexually dimorphic. In males, they form elongated loops suspended on cuticular spines, whereas in females they run like worm-like structures directly on the antennal surface. Single sensillum recordings demonstrated that olfactory sensory neurons housed in male s. circumfila in C. nasturtii responded to the female sex pheromone. In M. destructor, s. circumfila were attached to the antennal surface in both sexes, and displayed no response to sex pheromone components. A sexual dimorphism was also found in the number of s. trichodea per antennal segment in both C. nasturtii (male 1 vs. female 7) and M. destructor (male 13 vs. female 10). OSNs located in male M. destructor s. trichodea responded to the sex pheromone. This is the first gall midge single sensillum study, and the first demonstration of the functional significance of s. circumfila.


Assuntos
Dípteros/fisiologia , Células Receptoras Sensoriais/metabolismo , Atrativos Sexuais/metabolismo , Caracteres Sexuais , Olfato/fisiologia , Animais , Dípteros/anatomia & histologia , Eletrofisiologia , Feminino , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Células Receptoras Sensoriais/ultraestrutura , Especificidade da Espécie
5.
Pest Manag Sci ; 65(8): 851-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19360703

RESUMO

BACKGROUND: The swede midge, Contarinia nasturtii Kieffer, is a serious pest in crucifers. Its pheromone is a blend of (2S,9S)-diacetoxyundecane, (2S,10S)-diacetoxyundecane and (2S)-acetoxyundecane. The pheromone is used in monitoring traps, and this study examines possible ways to optimise the traps. RESULTS: Two dispenser types were compared: polyethylene dispensers and cotton dispensers. Polyethylene dispensers attracted male C. nasturtii for more than 6 weeks, whereas cotton dispensers were attractive for only 2 weeks. All three pheromone components were important for attraction of male midges in the field. The importance of the stereoisomeric compositions of the pheromone compounds was also tested-both in the wind tunnel and in the field. In the case of 2,9-diacetoxyundecane and 2-acetoxyundecane, the non-natural stereoisomers did not inhibit male C. nasturtii attraction, whereas one or both of the stereoisomers of 2,10-diacetoxyundecane did. CONCLUSION: Pheromone traps with the synthetic pheromone in a 1:2:0.02 ratio emitted from PE dispensers were highly effective and long lasting. As the mixture of stereoisomers of 2,10-diacetoxyundecane strongly inhibited attraction of male C. nasturtii while those of 2,9-diacetoxyundecane and 2-acetoxyundecane did not have any inhibitory effect, it is possible to produce traps that are effective and long lasting but cheaper to produce and maintain.


Assuntos
Dípteros/efeitos dos fármacos , Controle de Pragas/métodos , Feromônios/química , Feromônios/farmacologia , Animais , Fibra de Algodão , Feminino , Masculino , Controle de Pragas/economia , Polietileno/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA