Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Physiol ; 14: 1208719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601634

RESUMO

ATP binding cassette transporter A1 (ABCA1) limits the formation of high density lipoproteins (HDL) as genetic loss of ABCA1 function causes virtual HDL deficiency in patients with Tangier disease. Mice with a hepatocyte-specific ABCA1 knockout (Abca1 HSKO) have 20% of wild type (WT) plasma HDL-cholesterol levels, suggesting a major contribution of hepatic ABCA1 to the HDL phenotype. Whether plasma sphingolipids are reduced in Tangier disease and to what extent hepatic ABCA1 contributes to plasma sphingolipid (SL) levels is unknown. Here, we report a drastic reduction of total SL levels in plasma of a Tangier patient with compound heterozygosity for mutations in ABCA1. Compared to mutation-free controls, heterozygous mutations in ABCA1 had no significant effect on total SLs in plasma; however, apoB-depleted plasma showed a reduction in total SL also in het carriers. Similarly, liver specific Abca1 KO mice (Abca1 HSKO) showed reduced total sphingolipids in plasma and liver. In parallel, apoM and sphingosine-1-phosphate (S1P) levels were reduced in plasma of Abca1 HSKO mice. Primary hepatocytes from Abca1 HSKO mice showed a modest, but significant reduction in total SLs concentration compared to WT hepatocytes, although SL de novo synthesis and secretion were slightly increased in Abca1 HSKO hepatocytes. We conclude that hepatic ABCA1 is a signficant contributor to maintaining total plasma pool of HDL sphingolipids, including sphingomyelins and S1P.

2.
Hum Mol Genet ; 25(5): 853-65, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26681808

RESUMO

Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a rare autosomal dominant inherited peripheral neuropathy caused by mutations in the SPTLC1 and SPTLC2 subunits of serine palmitoyltransferase (SPT). The mutations induce a permanent shift in the substrate preference from L-serine to L-alanine, which results in the pathological formation of atypical and neurotoxic 1-deoxy-sphingolipids (1-deoxySL). Here we compared the enzymatic properties of 11 SPTLC1 and six SPTLC2 mutants using a uniform isotope labelling approach. In total, eight SPT mutants (STPLC1p.C133W, p.C133Y, p.S331F, p.S331Y and SPTLC2p.A182P, p.G382V, p.S384F, p.I504F) were associated with increased 1-deoxySL synthesis. Despite earlier reports, canonical activity with l-serine was not reduced in any of the investigated SPT mutants. Three variants (SPTLC1p.S331F/Y and SPTLC2p.I505Y) showed an increased canonical activity and increased formation of C20 sphingoid bases. These three mutations are associated with an exceptionally severe HSAN1 phenotype, and increased C20 sphingosine levels were also confirmed in plasma of patients. A principal component analysis of the analysed sphingoid bases clustered the mutations into three separate entities. Each cluster was related to a distinct clinical outcome (no, mild and severe HSAN1 phenotype). A homology model based on the protein structure of the prokaryotic SPT recapitulated the same grouping on a structural level. Mutations associated with the mild form clustered around the active site, whereas mutations associated with the severe form were located on the surface of the protein. In conclusion, we showed that HSAN1 mutations in SPT have distinct biochemical properties, which allowed for the prediction of the clinical symptoms on the basis of the plasma sphingoid base profile.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Mutação , Serina C-Palmitoiltransferase/genética , Adulto , Idoso , Alanina/química , Alanina/metabolismo , Domínio Catalítico , Criança , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Células HEK293 , Neuropatias Hereditárias Sensoriais e Autônomas/enzimologia , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Marcação por Isótopo , Pessoa de Meia-Idade , Modelos Moleculares , Fenótipo , Análise de Componente Principal , Proteínas Recombinantes/sangue , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serina/química , Serina/metabolismo , Serina C-Palmitoiltransferase/sangue , Serina C-Palmitoiltransferase/química , Índice de Gravidade de Doença , Esfingolipídeos/sangue , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Adulto Jovem
3.
J Inherit Metab Dis ; 38(1): 65-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25141825

RESUMO

Monogenic defects of sphingolipid biosynthesis have been recently identified in human patients. These enzyme deficiencies affect the synthesis of sphingolipid precursors, ceramides or complex glycosphingolipids. They are transmitted as autosomal recessive or dominant traits, and their resulting phenotypes often replicate the abnormalities seen in murine models deficient for the corresponding enzymes. In quite good agreement with the known critical roles of sphingolipids in cells from the nervous system and the epidermis, these genetic defects clinically manifest as neurological disorders, including paraplegia, epilepsy or peripheral neuropathies, or present with ichthyosis. The present review summarizes the genetic alterations, biochemical changes and clinical symptoms of this new group of inherited metabolic disorders. Hypotheses regarding the molecular pathophysiology and potential treatments of these diseases are also discussed.


Assuntos
Glicoesfingolipídeos/biossíntese , Erros Inatos do Metabolismo Lipídico/genética , Esfingolipídeos/biossíntese , Animais , Ataxia/genética , Modelos Animais de Doenças , Epilepsia/genética , Humanos , Camundongos , Mutação , Paraplegia/genética , Doenças do Sistema Nervoso Periférico/genética , Fenótipo , Retinite/genética
4.
Diabetes ; 63(4): 1326-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24379346

RESUMO

Irreversible failure of pancreatic ß-cells is the main culprit in the pathophysiology of diabetes, a disease that is now a global epidemic. Recently, elevated plasma levels of deoxysphingolipids, including 1-deoxysphinganine, have been identified as a novel biomarker for the disease. In this study, we analyzed whether deoxysphingolipids directly compromise the functionality of insulin-producing Ins-1 cells and primary islets. Treatment with 1-deoxysphinganine induced dose-dependent cytotoxicity with senescent, necrotic, and apoptotic characteristics and compromised glucose-stimulated insulin secretion. In addition, 1-deoxysphinganine altered cytoskeleton dynamics, resulting in intracellular accumulation of filamentous actin and activation of the Rho family GTPase Rac1. Moreover, 1-deoxysphinganine selectively upregulated ceramide synthase 5 expression and was converted to 1-deoxy-dihydroceramides without altering normal ceramide levels. Inhibition of intracellular 1-deoxysphinganine trafficking and ceramide synthesis improved the viability of the cells, indicating that the intracellular metabolites of 1-deoxysphinganine contribute to its cytotoxicity. Analyses of signaling pathways identified Jun N-terminal kinase and p38 mitogen-activated protein kinase as antagonistic effectors of cellular senescence. The results revealed that 1-deoxysphinganine is a cytotoxic lipid for insulin-producing cells, suggesting that the increased levels of this sphingolipid observed in diabetic patients may contribute to the reduced functionality of pancreatic ß-cells. Thus, targeting deoxysphingolipid synthesis may complement the currently available therapies for diabetes.


Assuntos
Células Secretoras de Insulina/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Glicemia/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Lipídeos , Camundongos , Ratos , Transdução de Sinais , Esfingosina/metabolismo , Esfingosina/farmacologia , Esfingosina/toxicidade
5.
Eur J Med Genet ; 56(5): 266-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23454272

RESUMO

Mutations in the serine palmitoyltransferase subunit 1 (SPTLC1) gene are the most common cause of hereditary sensory neuropathy type 1 (HSN1). Here we report the clinical and molecular consequences of a particular mutation (p.S331Y) in SPTLC1 affecting a patient with severe, diffuse muscle wasting and hypotonia, prominent distal sensory disturbances, joint hypermobility, bilateral cataracts and considerable growth retardation. Normal plasma sphingolipids were unchanged but 1-deoxy-sphingolipids were significantly elevated. In contrast to other HSN patients reported so far, our findings strongly indicate that mutations at amino acid position Ser331 of the SPTLC1 gene lead to a distinct syndrome.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Mutação , Fenótipo , Serina C-Palmitoiltransferase/genética , Serina/genética , Pré-Escolar , Éxons , Feminino , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Esfingolipídeos/sangue
6.
Mycotoxin Res ; 26(1): 1-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23605235

RESUMO

Light has a profound influence on ochratoxin biosynthesis by Penicillia. When incubated under constant daylight of a certain intensity, ochratoxin A biosynthesis is decreased by about 20-30% compared to incubation under constant darkness. Under day/night oscillation, the ochratoxin A polyketide synthase gene, a key gene of the ochratoxin A biosynthesis pathway, is rhythmically expressed, and moreover, the amount of ochratoxin also oscillates between the amounts produced either during constant darkness or during constant light. This indicates a partial degradation of ochratoxin A (20-30%) under light conditions until a certain lower limit is reached. This behavior is dependent on the light intensity. At 1,600 Lux, only weak effects could be observed; however, at 2,800 Lux, the effects became significant. After growth under constant light conditions, Penicillium produced ochratoxin B at amounts which are 5 times higher than after growth in constant dark or in alternating light/dark conditions. Growth experiments in the dark on medium with increasing amounts of ochratoxin A revealed that externally applied ochratoxin is moderately toxic. However, if the same growth experiments are carried out under light conditions, the growth inhibiting activity of ochratoxin A is greatly increased, indicating that light amplifies the toxic activity of ochratoxin. Because of the oscillation of the concentration of ochratoxin A during night and day incubation, Penicillium seems to have developed an adaptive mechanism to reduce the amount of ochratoxin A during daylight below a toxic level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA