Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Nat Commun ; 15(1): 3226, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622132

RESUMO

The tumor microenvironment plays a crucial role in determining response to treatment. This involves a series of interconnected changes in the cellular landscape, spatial organization, and extracellular matrix composition. However, assessing these alterations simultaneously is challenging from a spatial perspective, due to the limitations of current high-dimensional imaging techniques and the extent of intratumoral heterogeneity over large lesion areas. In this study, we introduce a spatial proteomic workflow termed Hyperplexed Immunofluorescence Imaging (HIFI) that overcomes these limitations. HIFI allows for the simultaneous analysis of > 45 markers in fragile tissue sections at high magnification, using a cost-effective high-throughput workflow. We integrate HIFI with machine learning feature detection, graph-based network analysis, and cluster-based neighborhood analysis to analyze the microenvironment response to radiation therapy in a preclinical model of glioblastoma, and compare this response to a mouse model of breast-to-brain metastasis. Here we show that glioblastomas undergo extensive spatial reorganization of immune cell populations and structural architecture in response to treatment, while brain metastases show no comparable reorganization. Our integrated spatial analyses reveal highly divergent responses to radiation therapy between brain tumor models, despite equivalent radiotherapy benefit.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Proteômica , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/patologia , Encéfalo/patologia , Imunofluorescência , Microambiente Tumoral
2.
Nat Commun ; 15(1): 1792, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413586

RESUMO

Neutrophils are evolutionarily conserved innate immune cells playing pivotal roles in host defense. Zebrafish models have contributed substantially to our understanding of neutrophil functions but similarities to human neutrophil maturation have not been systematically characterized, which limits their applicability to studying human disease. Here we show, by generating and analysing transgenic zebrafish strains representing distinct neutrophil differentiation stages, a high-resolution transcriptional profile of neutrophil maturation. We link gene expression at each stage to characteristic transcription factors, including C/ebp-ß, which is important for late neutrophil maturation. Cross-species comparison of zebrafish, mouse, and human samples confirms high molecular similarity of immature stages and discriminates zebrafish-specific from pan-species gene signatures. Applying the pan-species neutrophil maturation signature to RNA-sequencing data from human neuroblastoma patients reveals association between metastatic tumor cell infiltration in the bone marrow and an overall increase in mature neutrophils. Our detailed neutrophil maturation atlas thus provides a valuable resource for studying neutrophil function at different stages across species in health and disease.


Assuntos
Neutrófilos , Peixe-Zebra , Animais , Humanos , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Medula Óssea/metabolismo , Perfilação da Expressão Gênica
3.
Nat Rev Cancer ; 24(3): 171-191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316945

RESUMO

Tissue imaging has become much more colourful in the past decade. Advances in both experimental and analytical methods now make it possible to image protein markers in tissue samples in high multiplex. The ability to routinely image 40-50 markers simultaneously, at single-cell or subcellular resolution, has opened up new vistas in the study of tumour biology. Cellular phenotypes, interaction, communication and spatial organization have become amenable to molecular-level analysis, and application to patient cohorts has identified clinically relevant cellular and tissue features in several cancer types. Here, we review the use of multiplex protein imaging methods to study tumour biology, discuss ongoing attempts to combine these approaches with other forms of spatial omics, and highlight challenges in the field.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/metabolismo , Comunicação , Biologia
4.
Cancer Cell ; 42(3): 396-412.e5, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38242124

RESUMO

Despite advances in treatment, lung cancer survival rates remain low. A better understanding of the cellular heterogeneity and interplay of cancer-associated fibroblasts (CAFs) within the tumor microenvironment will support the development of personalized therapies. We report a spatially resolved single-cell imaging mass cytometry (IMC) analysis of CAFs in a non-small cell lung cancer cohort of 1,070 patients. We identify four prognostic patient groups based on 11 CAF phenotypes with distinct spatial distributions and show that CAFs are independent prognostic factors for patient survival. The presence of tumor-like CAFs is strongly correlated with poor prognosis. In contrast, inflammatory CAFs and interferon-response CAFs are associated with inflamed tumor microenvironments and higher patient survival. High density of matrix CAFs is correlated with low immune infiltration and is negatively correlated with patient survival. In summary, our data identify phenotypic and spatial features of CAFs that are associated with patient outcome in NSCLC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Fibroblastos Associados a Câncer/patologia , Prognóstico , Fenótipo , Microambiente Tumoral , Fibroblastos/patologia
5.
BMC Bioinformatics ; 25(1): 9, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172724

RESUMO

BACKGROUND: Highly multiplexed imaging enables single-cell-resolved detection of numerous biological molecules in their spatial tissue context. Interactive visualization of multiplexed imaging data is crucial at any step of data analysis to facilitate quality control and the spatial exploration of single cell features. However, tools for interactive visualization of multiplexed imaging data are not available in the statistical programming language R. RESULTS: Here, we describe cytoviewer, an R/Bioconductor package for interactive visualization and exploration of multi-channel images and segmentation masks. The cytoviewer package supports flexible generation of image composites, allows side-by-side visualization of single channels, and facilitates the spatial visualization of single-cell data in the form of segmentation masks. As such, cytoviewer improves image and segmentation quality control, the visualization of cell phenotyping results and qualitative validation of hypothesis at any step of data analysis. The package operates on standard data classes of the Bioconductor project and therefore integrates with an extensive framework for single-cell and image analysis. The graphical user interface allows intuitive navigation and little coding experience is required to use the package. We showcase the functionality and biological application of cytoviewer by analysis of an imaging mass cytometry dataset acquired from cancer samples. CONCLUSIONS: The cytoviewer package offers a rich set of features for highly multiplexed imaging data visualization in R that seamlessly integrates with the workflow for image and single-cell data analysis. It can be installed from Bioconductor via https://www.bioconductor.org/packages/release/bioc/html/cytoviewer.html . The development version and further instructions can be found on GitHub at https://github.com/BodenmillerGroup/cytoviewer .


Assuntos
Neoplasias , Software , Humanos , Linguagens de Programação , Processamento de Imagem Assistida por Computador
6.
Nat Protoc ; 18(11): 3565-3613, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37816904

RESUMO

Multiplexed imaging enables the simultaneous spatial profiling of dozens of biological molecules in tissues at single-cell resolution. Extracting biologically relevant information, such as the spatial distribution of cell phenotypes from multiplexed tissue imaging data, involves a number of computational tasks, including image segmentation, feature extraction and spatially resolved single-cell analysis. Here, we present an end-to-end workflow for multiplexed tissue image processing and analysis that integrates previously developed computational tools to enable these tasks in a user-friendly and customizable fashion. For data quality assessment, we highlight the utility of napari-imc for interactively inspecting raw imaging data and the cytomapper R/Bioconductor package for image visualization in R. Raw data preprocessing, image segmentation and feature extraction are performed using the steinbock toolkit. We showcase two alternative approaches for segmenting cells on the basis of supervised pixel classification and pretrained deep learning models. The extracted single-cell data are then read, processed and analyzed in R. The protocol describes the use of community-established data containers, facilitating the application of R/Bioconductor packages for dimensionality reduction, single-cell visualization and phenotyping. We provide instructions for performing spatially resolved single-cell analysis, including community analysis, cellular neighborhood detection and cell-cell interaction testing using the imcRtools R/Bioconductor package. The workflow has been previously applied to imaging mass cytometry data, but can be easily adapted to other highly multiplexed imaging technologies. This protocol can be implemented by researchers with basic bioinformatics training, and the analysis of the provided dataset can be completed within 5-6 h. An extended version is available at https://bodenmillergroup.github.io/IMCDataAnalysis/ .


Assuntos
Processamento de Imagem Assistida por Computador , Software , Fluxo de Trabalho , Biologia Computacional/métodos , Análise de Célula Única/métodos
7.
Nat Methods ; 20(9): 1304-1309, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653118

RESUMO

Imaging mass cytometry (IMC) is a highly multiplexed, antibody-based imaging method that captures heterogeneous spatial protein expression patterns at subcellular resolution. Here we report the extension of IMC to low-abundance markers through incorporation of the DNA-based signal amplification by exchange reaction, immuno-SABER. We applied SABER-IMC to image the tumor immune microenvironment in human melanoma by simultaneous imaging of 18 markers with immuno-SABER and 20 markers without amplification. SABER-IMC enabled the identification of immune cell phenotypic markers, such as T cell co-receptors and their ligands, that are not detectable with IMC.


Assuntos
Diagnóstico por Imagem , Melanoma , Humanos , Anticorpos , Citometria por Imagem , DNA , Microambiente Tumoral
8.
Nat Methods ; 20(9): 1310-1322, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653120

RESUMO

Rapid, highly multiplexed, nondestructive imaging that spans the molecular to the supra-cellular scale would be a powerful tool for tissue analysis. However, the physical constraints of established imaging methods limit the simultaneous improvement of these parameters. Whole-organism to atomic-level imaging is possible with tissue-penetrant, picometer-wavelength X-rays. To enable highly multiplexed X-ray imaging, we developed multielement Z-tag X-ray fluorescence (MEZ-XRF) that can operate at kHz speeds when combined with signal amplification by exchange reaction (SABER)-amplified Z-tag reagents. We demonstrated parallel imaging of 20 Z-tag or SABER Z-tag reagents at subcellular resolution in cell lines and multiple human tissues. We benchmarked MEZ-XRF against imaging mass cytometry and demonstrated the nondestructive multiscale repeat imaging capabilities of MEZ-XRF with rapid tissue overview scans, followed by slower, more sensitive imaging of low-abundance markers such as immune checkpoint proteins. The unique multiscale, nondestructive nature of MEZ-XRF, combined with SABER Z-tags for high sensitivity or enhanced speed, enables highly multiplexed bioimaging across biological scales.


Assuntos
Benchmarking , Neoplasias Cutâneas , Humanos , Raios X , Linhagem Celular , Microscopia de Fluorescência
9.
Nat Commun ; 14(1): 5154, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620318

RESUMO

Immune checkpoint inhibitor treatment has the potential to prolong survival in non-small cell lung cancer (NSCLC), however, some of the patients develop resistance following initial response. Here, we analyze the immune phenotype of matching tumor samples from a cohort of NSCLC patients showing good initial response to immune checkpoint inhibitors, followed by acquired resistance at later time points. By using imaging mass cytometry and whole exome and RNA sequencing, we detect two patterns of resistance¨: One group of patients is characterized by reduced numbers of tumor-infiltrating CD8+ T cells and reduced expression of PD-L1 after development of resistance, whereas the other group shows high CD8+ T cell infiltration and high expression of PD-L1 in addition to markedly elevated expression of other immune-inhibitory molecules. In two cases, we detect downregulation of type I and II IFN pathways following progression to resistance, which could lead to an impaired anti-tumor immune response. This study thus captures the development of immune checkpoint inhibitor resistance as it progresses and deepens our mechanistic understanding of immunotherapy response in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linfócitos T CD8-Positivos , Antígeno B7-H1/genética , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Imunossupressores , Fenótipo
10.
Nat Commun ; 14(1): 4294, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463917

RESUMO

Cancer-associated fibroblasts (CAFs) are a diverse cell population within the tumour microenvironment, where they have critical effects on tumour evolution and patient prognosis. To define CAF phenotypes, we analyse a single-cell RNA sequencing (scRNA-seq) dataset of over 16,000 stromal cells from tumours of 14 breast cancer patients, based on which we define and functionally annotate nine CAF phenotypes and one class of pericytes. We validate this classification system in four additional cancer types and use highly multiplexed imaging mass cytometry on matched breast cancer samples to confirm our defined CAF phenotypes at the protein level and to analyse their spatial distribution within tumours. This general CAF classification scheme will allow comparison of CAF phenotypes across studies, facilitate analysis of their functional roles, and potentially guide development of new treatment strategies in the future.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Fibroblastos Associados a Câncer/metabolismo , Proteômica , Fenótipo , Microambiente Tumoral/genética , Neoplasias/patologia
11.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292939

RESUMO

Highly multiplexed imaging enables single-cell-resolved detection of numerous biological molecules in their spatial tissue context. Interactive data visualization of multiplexed imaging data is necessary for quality control and hypothesis examination. Here, we describe cytoviewer, an R/Bioconductor package for interactive visualization and exploration of multi-channel images and segmentation masks. The cytoviewer package supports flexible generation of image composites, allows side-by-side visualization of single channels, and facilitates the spatial visualization of single-cell data in the form of segmentation masks. The package operates on SingleCellExperiment, SpatialExperiment and CytoImageList objects and therefore integrates with the Bioconductor framework for single-cell and image analysis. Users of cytoviewer need little coding expertise, and the graphical user interface allows user-friendly navigation. We showcase the functionality of cytoviewer by analysis of an imaging mass cytometry dataset of cancer patients.

12.
Cell Rep Med ; 4(3): 100977, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36921599

RESUMO

Although breast cancer mortality is largely caused by metastasis, clinical decisions are based on analysis of the primary tumor and on lymph node involvement but not on the phenotype of disseminated cells. Here, we use multiplex imaging mass cytometry to compare single-cell phenotypes of primary breast tumors and matched lymph node metastases in 205 patients. We observe extensive phenotypic variability between primary and metastatic sites and that disseminated cell phenotypes frequently deviate from the clinical disease subtype. We identify single-cell phenotypes and spatial organizations of disseminated tumor cells that are associated with patient survival and a weaker survival association for high-risk phenotypes in the primary tumor. We show that p53 and GATA3 in lymph node metastases provide prognostic information beyond clinical classifiers and can be measured with standard methods. Molecular characterization of disseminated tumor cells is an untapped source of clinically applicable prognostic information for breast cancer.


Assuntos
Linfonodos , Humanos , Metástase Linfática/patologia , Prognóstico , Linfonodos/diagnóstico por imagem , Linfonodos/patologia
13.
Nat Commun ; 14(1): 98, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609566

RESUMO

Immune checkpoint therapy in breast cancer remains restricted to triple negative patients, and long-term clinical benefit is rare. The primary aim of immune checkpoint blockade is to prevent or reverse exhausted T cell states, but T cell exhaustion in breast tumors is not well understood. Here, we use single-cell transcriptomics combined with imaging mass cytometry to systematically study immune environments of human breast tumors that either do or do not contain exhausted T cells, with a focus on luminal subtypes. We find that the presence of a PD-1high exhaustion-like T cell phenotype is associated with an inflammatory immune environment with a characteristic cytotoxic profile, increased myeloid cell activation, evidence for elevated immunomodulatory, chemotactic, and cytokine signaling, and accumulation of natural killer T cells. Tumors harboring exhausted-like T cells show increased expression of MHC-I on tumor cells and of CXCL13 on T cells, as well as altered spatial organization with more immature rather than mature tertiary lymphoid structures. Our data reveal fundamental differences between immune environments with and without exhausted T cells within luminal breast cancer, and show that expression of PD-1 and CXCL13 on T cells, and MHC-I - but not PD-L1 - on tumor cells are strong distinguishing features between these environments.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Receptor de Morte Celular Programada 1 , Exaustão das Células T , Fenótipo , Antineoplásicos/metabolismo , Linfócitos T CD8-Positivos
15.
Nat Methods ; 20(3): 418-423, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585456

RESUMO

Recent advances in multiplexed imaging methods allow simultaneous detection of dozens of proteins and hundreds of RNAs, enabling deep spatial characterization of both healthy and diseased tissues. Parameters for the design of optimal multiplex imaging studies, especially those estimating how much area has to be imaged to capture all cell phenotype clusters, are lacking. Here, using a spatial transcriptomic atlas of healthy and tumor human tissues, we developed a statistical framework that determines the number and area of fields of view necessary to accurately identify all cell phenotypes that are part of a tissue. Using this strategy on imaging mass cytometry data, we identified a measurement of tissue spatial segregation that enables optimal experimental design. This strategy will enable an improved design of multiplexed imaging studies.


Assuntos
Neoplasias , Projetos de Pesquisa , Humanos , Diagnóstico por Imagem , RNA , Neoplasias/diagnóstico por imagem
16.
Biol Imaging ; 3: e11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487685

RESUMO

With the aim of producing a 3D representation of tumors, imaging and molecular annotation of xenografts and tumors (IMAXT) uses a large variety of modalities in order to acquire tumor samples and produce a map of every cell in the tumor and its host environment. With the large volume and variety of data produced in the project, we developed automatic data workflows and analysis pipelines. We introduce a research methodology where scientists connect to a cloud environment to perform analysis close to where data are located, instead of bringing data to their local computers. Here, we present the data and analysis infrastructure, discuss the unique computational challenges and describe the analysis chains developed and deployed to generate molecularly annotated tumor models. Registration is achieved by use of a novel technique involving spherical fiducial marks that are visible in all imaging modalities used within IMAXT. The automatic pipelines are highly optimized and allow to obtain processed datasets several times quicker than current solutions narrowing the gap between data acquisition and scientific exploitation.

17.
Clin Cancer Res ; 28(24): 5368-5382, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228153

RESUMO

PURPOSE: The low mutational load of some cancers is considered one reason for the difficulty to develop effective tumor vaccines. To overcome this problem, we developed a strategy to design neopeptides through single amino acid mutations to enhance their immunogenicity. EXPERIMENTAL DESIGN: Exome and RNA sequencing as well as in silico HLA-binding predictions to autologous HLA molecules were used to identify candidate neopeptides. Subsequently, in silico HLA-anchor placements were used to deduce putative T-cell receptor (TCR) contacts of peptides. Single amino acids of TCR contacting residues were then mutated by amino acid replacements. Overall, 175 peptides were synthesized and sets of 25 each containing both peptides designed to bind to HLA class I and II molecules applied in the vaccination. Upon development of a tumor recurrence, the tumor-infiltrating lymphocytes (TIL) were characterized in detail both at the bulk and clonal level. RESULTS: The immune response of peripheral blood T cells to vaccine peptides, including natural peptides and designed neopeptides, gradually increased with repetitive vaccination, but remained low. In contrast, at the time of tumor recurrence, CD8+ TILs and CD4+ TILs responded to 45% and 100%, respectively, of the vaccine peptides. Furthermore, TIL-derived CD4+ T-cell clones showed strong responses and tumor cell lysis not only against the designed neopeptide but also against the unmutated natural peptides of the tumor. CONCLUSIONS: Turning tumor self-peptides into foreign antigens by introduction of designed mutations is a promising strategy to induce strong intratumoral CD4+ T-cell responses in a cold tumor like glioblastoma.


Assuntos
Linfócitos T CD4-Positivos , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Recidiva Local de Neoplasia , Linfócitos do Interstício Tumoral , Receptores de Antígenos de Linfócitos T/genética , Vacinação , Peptídeos , Aminoácidos , Linfócitos T CD8-Positivos
18.
STAR Protoc ; 3(3): 101578, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35880127

RESUMO

With mass and flow cytometry, millions of single-cell profiles with dozens of parameters can be measured to comprehensively characterize complex tumor ecosystems. Here, we present scQUEST, an open-source Python library for cell type identification and quantification of tumor ecosystem heterogeneity in patient cohorts. We provide a step-by-step protocol on the application of scQUEST on our previously generated human breast cancer single-cell atlas using mass cytometry and discuss how it can be adapted and extended for other datasets and analyses. For complete details on the use and execution of this protocol, please refer to Wagner et al. (2019).


Assuntos
Citometria de Fluxo , Neoplasias , Citometria de Fluxo/métodos , Humanos , Neoplasias/diagnóstico
19.
Nat Neurosci ; 25(7): 876-886, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35760863

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disease, perturbing neuronal and non-neuronal cell populations. In this study, using single-cell transcriptomics, we mapped all non-immune, non-neuronal cell populations in wild-type and AD model (5xFAD) mouse brains. We identified an oligodendrocyte state that increased in association with brain pathology, which we termed disease-associated oligodendrocytes (DOLs). In a murine model of amyloidosis, DOLs appear long after plaque accumulation, and amyloid-beta (Aß) alone was not sufficient to induce the DOL signature in vitro. DOLs could be identified in a mouse model of tauopathy and in other murine neurodegenerative and autoimmune inflammatory conditions, suggesting a common response to severe pathological conditions. Using quantitative spatial analysis of mouse and postmortem human brain tissues, we found that oligodendrocytes expressing a key DOL marker (SERPINA3N/SERPINA3 accordingly) are present in the cortex in areas of brain damage and are enriched near Aß plaques. In postmortem human brain tissue, the expression level of this marker correlated with cognitive decline. Altogether, this study uncovers a shared signature of oligodendrocytes in central nervous system pathologies.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia , Oligodendroglia/metabolismo , Placa Amiloide/metabolismo
20.
Allergy ; 77(8): 2468-2481, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567391

RESUMO

BACKGROUND: T-cell lymphopenia and functional impairment is a hallmark of severe acute coronavirus disease 2019 (COVID-19). How T-cell numbers and function evolve at later timepoints after clinical recovery remains poorly investigated. METHODS: We prospectively enrolled and longitudinally sampled 173 individuals with asymptomatic to critical COVID-19 and analyzed phenotypic and functional characteristics of T cells using flow cytometry, 40-parameter mass cytometry, targeted proteomics, and functional assays. RESULTS: The extensive T-cell lymphopenia observed particularly in patients with severe COVID-19 during acute infection had recovered 6 months after infection, which was accompanied by a normalization of functional T-cell responses to common viral antigens. We detected persisting CD4+ and CD8+ T-cell activation up to 12 months after infection, in patients with mild and severe COVID-19, as measured by increased HLA-DR and CD38 expression on these cells. Persistent T-cell activation after COVID-19 was independent of administration of a COVID-19 vaccine post-infection. Furthermore, we identified a subgroup of patients with severe COVID-19 that presented with persistently low CD8+ T-cell counts at follow-up and exhibited a distinct phenotype during acute infection consisting of a dysfunctional T-cell response and signs of excessive pro-inflammatory cytokine production. CONCLUSION: Our study suggests that T-cell numbers and function recover in most patients after COVID-19. However, we find evidence of persistent T-cell activation up to 12 months after infection and describe a subgroup of severe COVID-19 patients with persistently low CD8+ T-cell counts exhibiting a dysregulated immune response during acute infection.


Assuntos
COVID-19 , Linfopenia , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , Humanos , Linfopenia/etiologia , Linfopenia/metabolismo , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA