Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 122(5): 741-752, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36751130

RESUMO

Members of the fatty acid binding protein (FABP) family function as intracellular transporters of long-chain fatty acids and other hydrophobic molecules to different cellular compartments. Brain FABP (FABP7) exhibits ligand-directed differences in cellular transport. For example, when FABP7 binds to docosahexaenoic acid (DHA), the complex relocates to the nucleus and influences transcriptional activity, whereas FABP7 bound with monosaturated fatty acids remains in the cytosol. Preferential binding of FABP7 to polyunsaturated fatty acids like DHA has been previously observed and is thought to play a role in differential localization. However, we find that at 37°C, FABP7 does not display strong selectivity, suggesting that the conformational ensemble of FABP7 and its perturbation upon binding may be important. We use molecular dynamics simulations, NMR, and a variety of biophysical techniques to better understand the conformational ensemble of FABP7, how it is perturbed by fatty acid binding, and how this may be related to ligand-directed transport. We find that FABP7 has high degree of conformational heterogeneity that is substantially reduced upon ligand binding. We also observe substantial heterogeneity in ligand binding poses, which is consistent with our finding that ligand binding is resistant to mutations in key polar residues in the binding pocket. Our NMR experiments show that DHA binding leads to chemical shift perturbations in residues near the nuclear localization signal, which may point toward a mechanism of differential transport.


Assuntos
Proteínas de Ligação a Ácido Graxo , Simulação de Dinâmica Molecular , Ligantes , Proteínas de Ligação a Ácido Graxo/química , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados
2.
Biophys J ; 122(4): 603-615, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36698315

RESUMO

Fatty acid-binding proteins (FABPs) are chaperones that facilitate the transport of long-chain fatty acids within the cell and can provide cargo-dependent localization to specific cellular compartments. Understanding the nature of this transport is important because lipid signaling functions are associated with metabolic pathways impacting disease pathologies including cancer, autism, and schizophrenia. FABPs often associate with cell membranes to acquire and deliver their bound cargo as part of transport. We focus on brain FABP (FABP7), which demonstrates localization to the cytoplasm and nucleus, influencing transcription and fatty acid metabolism. We use a combined biophysical-computational approach to elucidate the interaction between FABP7 and model membranes. Specifically, we use multiple experiments to demonstrate that FABP7 can bind oleic acid and docosahexaenoic acid micelles. Data from NMR and multiscale molecular dynamics simulations reveal that the interaction with micelles is through FABP7's portal region residues. Simulations suggest that binding to membranes occurs through the same residues as micelles. Simulations also capture binding events where fatty acids dissociate from the membrane and enter FABP7's binding pocket. Overall, our data shed light on the interactions between FABP7 and OA or DHA micelles and provide insight into the transport of long-chain fatty acids.


Assuntos
Ácidos Graxos , Neoplasias , Humanos , Ácidos Graxos/metabolismo , Micelas , Proteínas de Ligação a Ácido Graxo/química , Neoplasias/metabolismo , Membrana Celular/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA