RESUMO
INTRODUCTION: Changes in the composition of the gut microbiota have been associated with the development of irritable bowel syndrome (IBS). However, to what extent specific bacterial species relate to clinical symptoms remains poorly characterized. We investigated the clinical relevance of bacterial species linked with increased proteolytic activity, histamine production, and superantigen (SAg) production in patients with IBS. METHODS: Fecal (n = 309) and nasal (n = 214) samples were collected from patients with IBS and healthy volunteers (HV). Clinical symptoms and gut transit time were evaluated. Bacterial abundance in feces and nasal swabs as well as fecal trypsin-like activity were assessed. RESULTS: The percentage of fecal samples containing Staphylococcus aureus was significantly higher in IBS compared with HV. Forty-nine percent of S. aureus -positive fecal samples from patients with IBS were also positive for SAgs, compared with 12% of HV. Patients with IBS and positive fecal SAg-producing S. aureus reported higher pain scores than those without S. aureus . Moreover, increased fecal proteolytic activity was associated with abdominal pain. Fecal abundance of Paraprevotella clara and Alistipes putredinis was significantly decreased in IBS, particularly in samples with higher proteolytic activity. Patients with lower Alistipes putredinis or Faecalibacterium prausnitzii abundance reported more severe abdominal pain. DISCUSSION: In keeping with our preclinical findings, we show that increased presence of SAg-producing S. aureus in fecal samples of patients with IBS is associated with increased levels of abdominal pain. We also show that increased fecal proteolytic activity is associated with increased abdominal pain in patients with IBS.
RESUMO
Irritable bowel syndrome (IBS) is a chronic gastrointestinal condition associated with altered bowel habits and recurrent abdominal pain, often triggered by food intake. Current treatments focus on improving stool pattern, but effective treatments for pain in IBS are still lacking due to our limited understanding of pathophysiological mechanisms. Visceral hypersensitivity (VHS), or abnormal visceral pain perception, underlies abdominal pain development in IBS, and mast cell activation has been shown to play an important role in the development of VHS. Our work recently revealed that abdominal pain in response to food intake is induced by the sensitization of colonic pain-sensing neurons by histamine produced by activated mast cells following a local IgE response to food. In this review, we summarize the current knowledge on abdominal pain and VHS pathophysiology in IBS, we outline the work leading to the discovery of the role of histamine in abdominal pain, and we introduce antihistamines as a novel treatment option to manage chronic abdominal pain in patients with IBS.
Assuntos
Dor Abdominal , Histamina , Síndrome do Intestino Irritável , Mastócitos , Dor Visceral , Síndrome do Intestino Irritável/imunologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/terapia , Humanos , Animais , Histamina/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Dor Abdominal/etiologia , Dor Abdominal/imunologia , Dor Visceral/etiologia , Dor Visceral/metabolismo , Antagonistas dos Receptores Histamínicos/uso terapêutico , Hipersensibilidade Alimentar/imunologia , AlimentosRESUMO
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by recurrent abdominal pain and an altered defecation pattern. Depending on the criteria used, it affects between 5 and 10% of the general population and has a serious impact on quality of life. Most patients with IBS show an induction or exacerbation of their symptoms, particularly abdominal pain, after eating certain foods. This raises the question of the role played by food in IBS pathophysiology. In this review, we describe the multiple risk factors of IBS, and we give an overview of the role of food as a trigger of IBS, distinguishing between immune and non-immune reactions to food. We finally highlight recent findings identifying an immune-mediated mechanism underlying food-induced abdominal pain in IBS.
Assuntos
Gastroenteropatias , Síndrome do Intestino Irritável , Dor Abdominal/complicações , Doença Crônica , Alimentos/efeitos adversos , Humanos , Qualidade de VidaRESUMO
Monocyte-derived macrophages (Mφs) are crucial regulators during muscularis inflammation. However, it is unclear which micro-environmental factors are responsible for monocyte recruitment and anti-inflammatory Mφ differentiation in this paradigm. Here, we investigate Mφ heterogeneity at different stages of muscularis inflammation and determine how environmental cues can attract and activate tissue-protective Mφs. Results showed that muscularis inflammation induced marked alterations in mononuclear phagocyte populations associated with a rapid infiltration of Ly6c+ monocytes that locally acquired unique transcriptional states. Trajectory inference analysis revealed two main pro-resolving Mφ subpopulations during the resolution of muscularis inflammation, i.e. Cd206+ MhcIIhi and Timp2+ MhcIIlo Mφs. Interestingly, we found that damage to the micro-environment upon muscularis inflammation resulted in EGC activation, which in turn stimulated monocyte infiltration and the consequent differentiation in anti-inflammatory CD206+ Mφs via CCL2 and CSF1, respectively. In addition, CSF1-CSF1R signaling was shown to be essential for the differentiation of monocytes into CD206+ Mφs and EGC proliferation during muscularis inflammation. Our study provides a comprehensive insight into pro-resolving Mφ differentiation and their regulators during muscularis inflammation. We deepened our understanding in the interaction between EGCs and Mφs, thereby highlighting pro-resolving Mφ differentiation as a potential novel therapeutic strategy for the treatment of intestinal inflammation.
Assuntos
Macrófagos , Monócitos , Humanos , Inflamação , Neuroglia , Anti-InflamatóriosRESUMO
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder that is characterized by abdominal pain and an altered defecation pattern. It affects between 5 and 20% of the general population and can seriously impact quality of life. The pathophysiology of IBS is rather complex and multifactorial including, for example, altered signalling by the gut-brain axis, dysbiosis, abnormal visceral pain signalling and intestinal immune activation. The latter has gained particular interest in recent years, with growing insight into the bidirectional communication between the nervous system and the immune system. In this Review, we detail the current evidence suggesting that immune activation contributes to the pathology seen in patients with IBS and discuss the potential mechanisms involved. Moreover, we describe how immune mediators, particularly those released by mast cells, can directly activate or sensitize pain-transmitting nerves, leading to increased pain signalling and abdominal pain. Finally, we discuss the potential of interventions targeting immune activation as a new therapeutic strategy for patients suffering from IBS.
Assuntos
Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Qualidade de Vida , Dor Abdominal/etiologia , Disbiose , MastócitosRESUMO
Background: We previously showed increased susceptibility to dextran sulfate sodium (DSS)-induced colitis in vagotomized mice. Here, we evaluated whether vagus nerve stimulation (VNS) is able to reduce the severity of DSS colitis and aimed to unravel the mechanism involved. Methods: Colitis was induced in wild type mice by 2.5% DSS administration in drinking water for 5 days. VNS (5 Hz, 1 ms, 1 mA) was applied 1 day prior to and after 4 days of DSS administration to evaluate changes in epithelial integrity and inflammatory response, respectively. Epithelial integrity was assessed using TUNEL and Ki67 staining. Monocytes, immature and mature macrophages were sorted from colonic samples and gene expression levels of pro-inflammatory cytokines were studied. Results: VNS applied prior to DSS administration (i.e., prophylactic VNS) reduced disease activity index (VNS 0.8 ± 0.6 vs. sham 2.8 ± 0.7, p < 0.001, n = 5) and tended to improve histology score. Prophylactic VNS significantly increased epithelial cell proliferation and diminished apoptosis compared to sham stimulation. VNS applied at day 4 during DSS administration (i.e., therapeutic VNS) decreased the influx of monocytes, monocyte-derived macrophages and neutrophils, and significantly reduced pro-inflammatory cytokine expression (i.e., Tnfα and Cxcl1) in immature macrophages compared to sham stimulation. Conclusions: A single period of VNS applied prior to DSS exposure reduced DSS-induced colitis by an improvement in epithelial integrity. On the other hand, VNS applied during the inflammatory phase of DSS colitis reduced cytokine expression in immature macrophages. Our data further underscores the potential of VNS as novel therapeutic approach for inflammatory bowel diseases.
RESUMO
Gastro-oesophageal reflux disease (GERD) is a common disorder in adults and children. The global prevalence of GERD is high and increasing. Non-erosive reflux disease is the most common phenotype of GERD. Heartburn and regurgitation are considered classic symptoms but GERD may present with various atypical and extra-oesophageal manifestations. The pathophysiology of GERD is multifactorial and different mechanisms may result in GERD symptoms, including gastric composition and motility, anti-reflux barrier, refluxate characteristics, clearance mechanisms, mucosal integrity and symptom perception. In clinical practice, the diagnosis of GERD is commonly established on the basis of response to anti-reflux treatment; however, a more accurate diagnosis requires testing that includes upper gastrointestinal tract endoscopy and reflux monitoring. New techniques and new reflux testing parameters help to better phenotype the condition. In children, the diagnosis of GERD is primarily based on history and physical examination and treatment vary with age. Treatment in adults includes a combination of lifestyle modifications with pharmacological, endoscopic or surgical intervention. In refractory GERD, optimization of proton-pump inhibitor treatment should be attempted before a series of diagnostic tests to assess the patient's phenotype.
Assuntos
Refluxo Gastroesofágico , Refluxo Gastroesofágico/diagnóstico , Refluxo Gastroesofágico/epidemiologia , Azia , Humanos , Inibidores da Bomba de Prótons/uso terapêutico , EstômagoRESUMO
In this issue of Immunity, Schiller et al. report that local sympathetic nerve activation decreases endothelial expression of the adhesion molecule MAdCAM-1, reducing immune cell infiltration and colitis-induced inflammation. These findings suggest that local sympathetic stimulation provides a key gateway for regulating organ homeostasis.
Assuntos
Colite , Mucoproteínas , Moléculas de Adesão Celular , Endotélio , Humanos , NeuroimunomodulaçãoRESUMO
Accumulating evidence shows that intestinal homeostasis is mediated by cross-talk between the nervous system, enteric neurons and immune cells, together forming specialized neuroimmune units at distinct anatomical locations within the gut. In this review, we will particularly discuss how the intrinsic and extrinsic neuronal circuitry regulates macrophage function and phenotype in the gut during homeostasis and aberrant inflammation, such as observed in inflammatory bowel disease (IBD). Furthermore, we will provide an overview of basic and translational IBD research using these neuronal circuits as a novel therapeutic tool. Finally, we will highlight the different challenges ahead to make bioelectronic neuromodulation a standard treatment for intestinal immune-mediated diseases.
Assuntos
Eixo Encéfalo-Intestino/imunologia , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Animais , Homeostase/imunologia , Humanos , Neurônios/imunologiaRESUMO
Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.
Assuntos
Dor Abdominal/imunologia , Dor Abdominal/patologia , Alérgenos/imunologia , Hipersensibilidade Alimentar/imunologia , Alimentos/efeitos adversos , Intestinos/imunologia , Síndrome do Intestino Irritável/imunologia , Dor Abdominal/etiologia , Dor Abdominal/microbiologia , Adulto , Animais , Citrobacter rodentium/imunologia , Diarreia/imunologia , Diarreia/microbiologia , Diarreia/patologia , Infecções por Enterobacteriaceae/complicações , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Hipersensibilidade Alimentar/complicações , Hipersensibilidade Alimentar/microbiologia , Hipersensibilidade Alimentar/patologia , Glutens/imunologia , Humanos , Imunoglobulina E/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/microbiologia , Intestinos/patologia , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/patologia , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Leite/imunologia , Ovalbumina/imunologia , Qualidade de Vida , Receptores Histamínicos H1/metabolismo , Proteínas de Soja/imunologia , Triticum/imunologiaRESUMO
BACKGROUND: Vagus nerve (VN) stimulation is currently evaluated as a novel approach to treat immune-mediated disorders. The optimal stimulation parameters, however, largely depend on the VN composition potentially impacting on its clinical translation. Hence, we evaluated whether morphological differences exist between the cervical and abdominal VNs across different species. MATERIALS AND METHODS: The cervical and abdominal VNs of mouse, pig, and humans were stained for major basic protein and neurofilament F to identify the percentage and size of myelinated and non-myelinated fibers. RESULTS: The percentage of myelinated fibers was comparable between species, but was higher in the cervical VN compared with the abdominal VN. The cervical VN contained 54 ± 4%, 47 ± 7%, and 54 ± 7% myelinated fibers in mouse, pig, and humans, respectively. The myelinated fibers consisted of small-diameter (mouse: 71%, pig: 80%, and humans: 63%), medium-diameter (mouse: 21%, pig: 18%, and humans: 33%), and large-diameter fibers (mouse: 7%, pig: 2%, and humans: 4%). The abdominal VN predominantly contained unmyelinated fibers (mouse: 93%, pig: 90%, and humans: 94%). The myelinated fibers mainly consisted of small-diameter fibers (mouse: 99%, pig: 85%, and humans: 74%) and fewer medium-diameter (mouse: 1%, pig: 13%, and humans: 23%) and large-diameter fibers (mouse: 0%, pig: 2%, and humans: 3%). CONCLUSION: The VN composition was largely similar with respect to myelinated and unmyelinated fibers in the species studied. Human and porcine VNs had a comparable diameter and similar amounts of fibrous tissue and contained multiple fascicles, implying that the porcine VN may be suitable to optimize stimulation parameters for clinical trials.
Assuntos
Bainha de Mielina/metabolismo , Nervo Vago/metabolismo , Animais , Humanos , Camundongos , Fibras Nervosas/metabolismo , SuínosRESUMO
BACKGROUND AND AIMS: Ulcerative colitis [UC] is associated with excessive neutrophil infiltration and collateral tissue damage, but the link is not yet completely understood. Since c-MET receptor tyrosine kinase [MET] is required for neutrophil chemoattraction and cytotoxicity in response to its ligand hepatocyte growth factor [HGF], we aimed to identify the function of HGF-MET signalling in neutrophils in UC patients and in mice during intestinal inflammation. METHODS: Serum and colonic biopsies from healthy controls and UC patients with active [Mayo endoscopic subscore 2-3] and inactive [Mayo endoscopic subscore 0-1] disease were collected to assess the level of serum and colonic HGF. Disease progression and immune cell infiltration were assessed during dextran sodium sulphate [DSS] colitis in wild-type and MRP8-Cre MET-LoxP mice. RESULTS: Increased mucosal HGF expression was detected in patients with active UC, and in mice during the inflammatory phase of DSS colitis. Similarly, serum HGF was significantly increased in active UC patients and positively correlated with C-reactive protein and blood neutrophil counts. Flow cytometric analysis also demonstrated an upregulation of colonic MET+ neutrophils during DSS colitis. Genetic ablation of MET in neutrophils reduced the severity of DSS-induced colitis. Concomitantly, there was a decreased number of TH17 cells, which could be due to a decreased production of IL-1ß by MET-deficient neutrophils. CONCLUSIONS: These data highlight the central role of neutrophilic HGF-MET signalling in exacerbating damage during intestinal inflammation. Hence, selective blockade of this pathway in neutrophils could be considered as a novel therapeutic approach in UC.
Assuntos
Colite Ulcerativa/genética , Fator de Crescimento de Hepatócito/farmacologia , Proteínas Proto-Oncogênicas c-met/farmacologia , Transdução de Sinais/fisiologia , Exacerbação dos Sintomas , Animais , Bélgica , Colite Ulcerativa/fisiopatologia , Colo/metabolismo , Colo/patologia , Colo/fisiopatologia , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Citometria de Fluxo/estatística & dados numéricos , Fator de Crescimento de Hepatócito/genética , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais/imunologiaRESUMO
BACKGROUND: Ephrin-B2/EphB receptor signaling contributes to persistent pain states such as postinflammatory and neuropathic pain. Visceral hypersensitivity (VHS) is a major mechanism underlying abdominal pain in patients with irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD) in remission, but the underlying pathophysiology remains unclear. Here, we evaluated the spinal ephrin-B2/EphB pathway in VHS in 2 murine models of VHS, that is, postinflammatory TNBS colitis and maternal separation (MS). METHODS: Wild-type (WT) mice and mice lacking ephrin-B2 in Nav 1.8 nociceptive neurons (cKO) were studied. VHS was induced by: 1. intracolonic instillation of TNBS or 2. water avoidance stress (WAS) in mice that underwent maternal separation (MS). VHS was assessed by quantifying the visceromotor response (VMRs) during colorectal distention. Colonic tissue and spinal cord were collected for histology, gene, and protein expression evaluation. KEY RESULTS: In WT mice, but not cKO mice, TNBS induced VHS at day 14 after instillation, which returned to baseline perception from day 28 onwards. In MS WT mice, WAS induced VHS for up to 4 weeks. In cKO however, visceral pain perception returned to basal level by week 4. The development of VHS in WT mice was associated with significant upregulation of spinal ephrin-B2 and EphB1 mRNA expression or protein levels in the TNBS model and upregulation of spinal ephrin-B2 protein in the MS model. No changes were observed in cKO mice. VHS was not associated with persistent intestinal inflammation. CONCLUSIONS AND INFERENCES: Overall, our data indicate that the ephrin-B2/EphB1 spinal signaling pathway is involved in VHS and may represent a novel therapeutic target.
Assuntos
Efrina-B1/metabolismo , Efrina-B2/metabolismo , Hiperalgesia/metabolismo , Medula Espinal/metabolismo , Dor Visceral/metabolismo , Animais , Hiperalgesia/etiologia , Inflamação/complicações , Masculino , Privação Materna , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Estresse Psicológico/complicações , Dor Visceral/etiologiaRESUMO
Intestinal homeostasis relies on the reciprocal crosstalk between enteric neurons and immune cells, which together form neuro-immune units that occupy distinct anatomical niches within the gut. Here we will review the recent advances in our understanding of neuro-immune crosstalk within the gut, with focus on macrophages, mast cells and innate lymphoid cells. In particular, we will discuss the role of neuron-immune cell crosstalk in homeostasis, and how aberrant communication may underlie disease in the gastro-intestinal tract.
Assuntos
Linfócitos , Macrófagos , Mastócitos , Imunidade Inata , Mucosa IntestinalRESUMO
OBJECTIVE: Antireflux surgery can be proposed in patients with GORD, especially when proton pump inhibitor (PPI) use leads to incomplete symptom improvement. However, to date, international consensus guidelines on the clinical criteria and additional technical examinations used in patient selection for antireflux surgery are lacking. We aimed at generating key recommendations in the selection of patients for antireflux surgery. DESIGN: We included 35 international experts (gastroenterologists, surgeons and physiologists) in a Delphi process and developed 37 statements that were revised by the Consensus Group, to start the Delphi process. Three voting rounds followed where each statement was presented with the evidence summary. The panel indicated the degree of agreement for the statement. When 80% of the Consensus Group agreed (A+/A) with a statement, this was defined as consensus. All votes were mutually anonymous. RESULTS: Patients with heartburn with a satisfactory response to PPIs, patients with a hiatal hernia (HH), patients with oesophagitis Los Angeles (LA) grade B or higher and patients with Barrett's oesophagus are good candidates for antireflux surgery. An endoscopy prior to antireflux surgery is mandatory and a barium swallow should be performed in patients with suspicion of a HH or short oesophagus. Oesophageal manometry is mandatory to rule out major motility disorders. Finally, oesophageal pH (±impedance) monitoring of PPI is mandatory to select patients for antireflux surgery, if endoscopy is negative for unequivocal reflux oesophagitis. CONCLUSION: With the ICARUS guidelines, we generated key recommendations for selection of patients for antireflux surgery.
Assuntos
Refluxo Gastroesofágico/cirurgia , Seleção de Pacientes , Adulto , Atitude do Pessoal de Saúde , Consenso , Técnica Delphi , Endoscopia , Monitoramento do pH Esofágico , Refluxo Gastroesofágico/complicações , Refluxo Gastroesofágico/patologia , Humanos , Manometria , Guias de Prática Clínica como Assunto , Padrões de Prática MédicaRESUMO
BACKGROUND: Postprandial stationary pH monitoring studies have identified the acid pocket. To what extent a similar pool of acid is present in the fasting state or at night remains however unclear. METHODS: The study was performed in 9 HV without a hiatal hernia. A pH-impedance-pressure catheter was positioned at the Z-line. First, the presence of the acid pocket was monitored under stationary conditions during 2 hours after ingestion of a standardized meal. Thereafter, the equipment was connected to an ambulatory monitoring device for 24-hour recording. RESULTS: Under stationary conditions, a postprandial acid pocket was present in 7 of the 9 HV, from 9 ± 7 minutes after meal onwards during 47 ± 8 minutes. During ambulatory 24-hour monitoring, postprandial acid pockets emerged significantly later, but no differences in duration or position were detected. During nighttime, an acid pool was detected with its proximal border at the level of the cardia, which at later, time points gradually moved to a more distal position. This led to a gradual decrease in nocturnal acid exposure from proximal to distal, a phenomenon that was preceded by a bust of gastric contractions. Nocturnal reflux originated from the cardiac region, and was more acidic in the early compared with late nocturnal period. CONCLUSION: The acid pocket is present in the postprandial period under both stationary and ambulatory conditions. Of interest, at night, a pool of acid can be demonstrated which is periodically shifted more distally. This pool of acid represents the reservoir from which nocturnal reflux originates.
Assuntos
Junção Esofagogástrica/química , Determinação da Acidez Gástrica , Refluxo Gastroesofágico/fisiopatologia , Período Pós-Prandial/fisiologia , Monitoramento do pH Esofágico/métodos , Ácido Gástrico/química , Voluntários Saudáveis , Humanos , Concentração de Íons de HidrogênioRESUMO
While the roles of parenchymal microglia in brain homeostasis and disease are fairly clear, other brain-resident myeloid cells remain less well understood. By dissecting border regions and combining single-cell RNA-sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the diversity of non-parenchymal brain macrophages. Border-associated macrophages (BAMs) residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets with tissue-specific transcriptional signatures, and their cellular composition changed during postnatal development. BAMs exhibited a mixed ontogeny, and subsets displayed distinct self-renewal capacity following depletion and repopulation. Single-cell and fate-mapping analysis both suggested that there is a unique microglial subset residing on the apical surface of the choroid plexus epithelium. Finally, gene network analysis and conditional deletion revealed IRF8 as a master regulator that drives the maturation and diversity of brain macrophages. Our results provide a framework for understanding host-macrophage interactions in both the healthy and diseased brain.
Assuntos
Encéfalo/citologia , Fatores Reguladores de Interferon/metabolismo , Macrófagos/citologia , Macrófagos/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologiaRESUMO
BACKGROUND: Mucosal immune activation has been postulated to play an important role in the pathogenesis of irritable bowel syndrome (IBS). However, data are conflicting and often based on small patient cohorts. Here, we aimed to evaluate the gene expression of a large set of immune-related genes in mucosal biopsies from IBS patients and healthy volunteers (HV). METHODS: A total of 171 IBS patients and 127 HV were included in the study. Rectum biopsies were collected from a cohort of 70 HV and 77 IBS patients (Rome III) and colon descendens biopsies from another cohort of 57 HV and 94 IBS patients (Rome II). Gene expression was assessed using OpenArray technology, and validated questionnaires were used to evaluate clinical characteristics (GI symptoms, somatization, anxiety, and depression). KEY RESULTS: A subset of IBS patients (33%) with increased immune activation in the colon descendens was identified using multivariate analysis and displayed increased gene expression of IL1B (3-fold change), prostaglandin synthase PTGS2 (2.1-fold change), and the G-protein-coupled receptor MRGPRX2 (10.7-fold change). Clinical characteristics in this subgroup were however similar to the rest of the patient cohort. Analysis of rectal biopsies failed to identify such subgroup of "immuno-active" IBS patients in the other patient cohort. CONCLUSION: A subset of IBS patients reveals evidence of immune activation in the colon descendens, but not in the rectum; however, gene expression is unrelated to clinical symptoms. To what extent this subgroup might however respond to anti-inflammatory therapy remains to be investigated.
Assuntos
Imunidade nas Mucosas/imunologia , Mucosa Intestinal/imunologia , Síndrome do Intestino Irritável/imunologia , Transcriptoma/imunologia , Adulto , Idoso , Colo Sigmoide/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reto/imunologiaRESUMO
BACKGROUND: The vagus nerve has emerged as an important modulator of the intestinal immune system. Its anti-inflammatory properties have been previously shown in innate and Th1/Th17 predominant inflammatory models. To what extent the vagus nerve is of importance in Th2 inflammatory responses like food allergy is still unclear. In this study, we therefore aimed to investigate the effect of vagotomy (VGX) and vagus nerve stimulation (VNS), on the development and severity of experimental food allergy. METHODS: Balb/C mice were first sensitized with ovalbumin (OVA) in the presence of alum. Prior to oral challenges with OVA, mice were subjected to VGX or VNS. Disease severity was determined by assessing severity and onset of diarrhoea, OVA-specific antibody production, mast cell number and activity, inflammatory gene expression in duodenal tissue and lamina propria immune cells by flow cytometry analysis. RESULTS: When compared to control mice, VGX did not significantly affect the development and severity of the disease in our model of food allergy. VNS, on the other hand, resulted in a significant amelioration of the different inflammatory parameters assessed. This effect was independent of α7nAChR and is possibly mediated through the dampening of mast cells and increased phagocytosis of OVA by CX3CR1hi macrophages. CONCLUSIONS: These results underscore the anti-inflammatory properties of the vagus nerve and the potential of neuro-immune interactions in the intestine. Further insight into the underlying mechanisms could ultimately lead to novel therapeutic approaches in the treatment of not only food allergy but also other immune-mediated diseases.