Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Behav Neurosci ; 18: 1446991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247713

RESUMO

The delicate balance between discrimination and generalization of responses is crucial for survival in our ever-changing environment. In particular, it is important to understand how stimulus discrimination affects the level of stimulus generalization. For example, when we use non-differential training for Pavlovian eyeblink conditioning to investigate generalization of cerebellar-related eyelid motor responses, we find generalization effects on amount, amplitude and timing of the conditioned responses. However, it is unknown what the generalization effects are following differential training. We trained mice to close their eyelids to a 10 kHz tone with an air-puff as the reinforcing stimulus (CS+), while alternatingly exposing them to a tone frequency of either 4 kHz, 9 kHz or 9.5 kHz without the air-puff (CS-) during the training blocks. We tested the generalization effects during the expression of the responses after the training period with tones ranging from 2 kHz to 20 kHz. Our results show that the level of generalization tended to positively correlate with the difference between the CS+ and the CS- training stimuli. These effects of generalization were found for the probability, amplitude but not for the timing of the conditioned eyelid responses. These data indicate the specificity of the generalization effects following differential versus non-differential training, highlighting the relevance of discrimination learning for stimulus generalization.

2.
PLoS Comput Biol ; 20(4): e1011277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574161

RESUMO

According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.


Assuntos
Cerebelo , Simulação por Computador , Condicionamento Palpebral , Modelos Neurológicos , Plasticidade Neuronal , Plasticidade Neuronal/fisiologia , Animais , Cerebelo/fisiologia , Condicionamento Palpebral/fisiologia , Células de Purkinje/fisiologia , Piscadela/fisiologia , Condicionamento Clássico/fisiologia , Sinapses/fisiologia , Biologia Computacional , Camundongos , Córtex Cerebelar/fisiologia
3.
Cerebellum ; 23(5): 1859-1866, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38467957

RESUMO

Climbing fibers, connecting the inferior olive and Purkinje cells, form the nervous system's strongest neural connection. These fibers activate after critical events like motor errors or anticipation of rewards, leading to bursts of excitatory postsynaptic potentials (EPSPs) in Purkinje cells. The number of EPSPs is a crucial variable when the brain is learning a new motor skill. Yet, we do not know what determines the number of EPSPs. Here, we measured the effect of nucleo-olivary stimulation on periorbital elicited climbing fiber responses through in-vivo intracellular Purkinje cell recordings in decerebrated ferrets. The results show that while nucleo-olivary stimulation decreased the probability of a response occurring at all, it did not reduce the number of EPSPs. The results suggest that nucleo-olivary stimulation does not influence the number of EPSPs in climbing fiber bursts.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Furões , Núcleo Olivar , Células de Purkinje , Animais , Células de Purkinje/fisiologia , Células de Purkinje/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Núcleo Olivar/fisiologia , Estimulação Elétrica/métodos , Fibras Nervosas/fisiologia , Masculino , Vias Neurais/fisiologia , Estado de Descerebração
4.
STAR Protoc ; 3(2): 101289, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496792

RESUMO

Transsynaptic viral tracing requires tissue sectioning, manual cell counting, and anatomical assignment, all of which are time intensive. We describe a protocol for BrainPipe, a scalable software for automated anatomical alignment and object counting in light-sheet microscopy volumes. BrainPipe can be generalized to new counting tasks by using a new atlas and training a neural network for object detection. Combining viral tracing, iDISCO+ tissue clearing, and BrainPipe facilitates mapping of cerebellar connectivity to the rest of the murine brain. For complete details on the use and execution of this protocol, please refer to Pisano et al. (2021).


Assuntos
Encéfalo , Cerebelo , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Microscopia de Fluorescência/métodos , Software
5.
Cell Rep ; 36(12): 109721, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551311

RESUMO

Cerebellar outputs take polysynaptic routes to reach the rest of the brain, impeding conventional tracing. Here, we quantify pathways between the cerebellum and forebrain by using transsynaptic tracing viruses and a whole-brain analysis pipeline. With retrograde tracing, we find that most descending paths originate from the somatomotor cortex. Anterograde tracing of ascending paths encompasses most thalamic nuclei, especially ventral posteromedial, lateral posterior, mediodorsal, and reticular nuclei. In the neocortex, sensorimotor regions contain the most labeled neurons, but we find higher densities in associative areas, including orbital, anterior cingulate, prelimbic, and infralimbic cortex. Patterns of ascending expression correlate with c-Fos expression after optogenetic inhibition of Purkinje cells. Our results reveal homologous networks linking single areas of the cerebellar cortex to diverse forebrain targets. We conclude that shared areas of the cerebellum are positioned to provide sensory-motor information to regions implicated in both movement and nonmotor function.


Assuntos
Cerebelo/metabolismo , Vias Neurais/fisiologia , Animais , Córtex Cerebral/metabolismo , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Simplexvirus/genética , Núcleos Talâmicos/metabolismo
6.
Front Behav Neurosci ; 15: 690019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267630

RESUMO

Introduction: Pigs have been an increasingly popular preclinical model in nutritional neuroscience, as their anatomy, physiology, and nutrition requirements are highly comparable to those of humans. Eyeblink conditioning is one of the most well-validated behavioral paradigms in neuroscience to study underlying mechanisms of learning and memory formation in the cerebellum. Eyeblink conditioning has been performed in many species but has never been done on young pigs. Therefore, our aim here was to develop and validate an eyeblink conditioning paradigm in young pigs. Method: Eighteen intact male pigs were artificially reared from postnatal day 2-30. The eyeblink conditioning setup consisted of a sound-damping box with a hammock that pigs were placed in, which allowed the pig to remain comfortable yet maintain a typical range of head motion. In a delay conditioning paradigm, the conditional stimulus (CS) was a 550 ms blue light-emitting diode (LED), the unconditional stimulus (US) was a 50 ms eye air-puff, the CS-US interval was 500 ms. Starting at postnatal day 14, pigs were habituated for 5 days to the eyeblink conditioning setup, followed by 5 daily sessions of acquisition training (40 paired CS-US trials each day). Results: The group-averaged amplitude of conditioned eyelid responses gradually increased over the course of the 5 days of training, indicating that pigs learned to make the association between the LED light CS and the air-puff US. A similar increase was found for the conditioned response (CR) probability: the group-averaged CR probability on session 1 was about 12% and reached a CR probability of 55% on day 5. The latency to CR peak time lacked a temporal preference in the first session but clearly showed preference from the moment that animals started to show more CRs in session 2 and onwards whereby the eyelid was maximally closed exactly at the moment that the US would be delivered. Conclusion: We concluded that 3-week-old pigs have the capability of performing in a cerebellar classical conditioning task, demonstrating for the first time that eyeblink conditioning in young pigs has the potential to be a valuable behavioral tool to measure neurodevelopment.

7.
Elife ; 102021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33973524

RESUMO

Distinct populations of Purkinje cells (PCs) with unique molecular and connectivity features are at the core of the modular organization of the cerebellum. Previously, we showed that firing activity of PCs differs between ZebrinII-positive and ZebrinII-negative cerebellar modules (Zhou et al., 2014; Wu et al., 2019). Here, we investigate the timing and extent of PC differentiation during development in mice. We found that several features of PCs, including activity levels, dendritic arborization, axonal shape and climbing fiber input, develop differentially between nodular and anterior PC populations. Although all PCs show a particularly rapid development in the second postnatal week, anterior PCs typically have a prolonged physiological and dendritic maturation. In line herewith, younger mice exhibit attenuated anterior-dependent eyeblink conditioning, but faster nodular-dependent compensatory eye movement adaptation. Our results indicate that specific cerebellar regions have unique developmental timelines which match with their related, specific forms of cerebellum-dependent behaviors.


Assuntos
Cerebelo/fisiologia , Células de Purkinje/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Cerebelo/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
J Neurophysiol ; 125(2): 398-407, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326350

RESUMO

Cacna1a encodes the pore-forming α1A subunit of CaV2.1 voltage-dependent calcium channels, which regulate neuronal excitability and synaptic transmission. Purkinje cells in the cortex of cerebellum abundantly express these CaV2.1 channels. Here, we show that homozygous tottering (tg) mice, which carry a loss-of-function Cacna1a mutation, exhibit severely impaired learning in Pavlovian eyeblink conditioning, which is a cerebellar-dependent learning task. Performance of reflexive eyeblinks is unaffected in tg mice. Transient seizure activity in tg mice further corrupted the amplitude of eyeblink conditioned responses. Our results indicate that normal calcium homeostasis is imperative for cerebellar learning and that the oscillatory state of the brain can affect the expression thereof.NEW & NOTEWORTHY In this study, we confirm the importance of normal calcium homeostasis in neurons for learning and memory formation. In a mouse model with a mutation in an essential calcium channel that is abundantly expressed in the cerebellum, we found severely impaired learning in eyeblink conditioning. Eyeblink conditioning is a cerebellar-dependent learning task. During brief periods of brain-wide oscillatory activity, as a result of the mutation, the expression of conditioned eyeblinks was even further disrupted.


Assuntos
Piscadela , Canais de Cálcio Tipo N/genética , Condicionamento Clássico , Animais , Cálcio/metabolismo , Cerebelo/fisiologia , Feminino , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Cell Rep ; 31(2): 107515, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294428

RESUMO

The majority of excitatory postsynaptic currents in the brain are gated through AMPA-type glutamate receptors, the kinetics and trafficking of which can be modulated by auxiliary proteins. It remains to be elucidated whether and how auxiliary proteins can modulate synaptic function to contribute to procedural memory formation. In this study, we report that the AMPA-type glutamate receptor (AMPAR) auxiliary protein SHISA6 (CKAMP52) is expressed in cerebellar Purkinje cells, where it co-localizes with GluA2-containing AMPARs. The absence of SHISA6 in Purkinje cells results in severe impairments in the adaptation of the vestibulo-ocular reflex and eyeblink conditioning. The physiological abnormalities include decreased presence of AMPARs in synaptosomes, impaired excitatory transmission, increased deactivation of AMPA receptors, and reduced induction of long-term potentiation at Purkinje cell synapses. Our data indicate that Purkinje cells require SHISA6-dependent modification of AMPAR function in order to facilitate cerebellar, procedural memory formation.


Assuntos
Proteínas de Transporte/genética , Proteínas de Membrana/genética , Células de Purkinje/metabolismo , Receptores de AMPA/metabolismo , Animais , Proteínas de Transporte/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Transporte Proteico , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
10.
Proc Natl Acad Sci U S A ; 117(12): 6855-6865, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152108

RESUMO

Perineuronal nets (PNNs) are assemblies of extracellular matrix molecules, which surround the cell body and dendrites of many types of neuron and regulate neural plasticity. PNNs are prominently expressed around neurons of the deep cerebellar nuclei (DCN), but their role in adult cerebellar plasticity and behavior is far from clear. Here we show that PNNs in the mouse DCN are diminished during eyeblink conditioning (EBC), a form of associative motor learning that depends on DCN plasticity. When memories are fully acquired, PNNs are restored. Enzymatic digestion of PNNs in the DCN improves EBC learning, but intact PNNs are necessary for memory retention. At the structural level, PNN removal induces significant synaptic rearrangements in vivo, resulting in increased inhibition of DCN baseline activity in awake behaving mice. Together, these results demonstrate that PNNs are critical players in the regulation of cerebellar circuitry and function.


Assuntos
Piscadela/fisiologia , Núcleos Cerebelares/fisiologia , Condicionamento Palpebral/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Matriz Extracelular , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL
11.
PLoS Biol ; 18(1): e3000596, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905212

RESUMO

Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such "intrinsic plasticity" in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell-specific knockout (KO) of the calcium-activated K+ channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning.


Assuntos
Potenciais de Ação/genética , Aprendizagem/fisiologia , Memória/fisiologia , Atividade Motora/fisiologia , Células de Purkinje/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Animais , Cerebelo/citologia , Cerebelo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Reflexo Vestíbulo-Ocular , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
12.
Elife ; 82019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486767

RESUMO

Despite the canonical homogeneous character of its organization, the cerebellum plays differential computational roles in distinct sensorimotor behaviors. Previously, we showed that Purkinje cell (PC) activity differs between zebrin-negative (Z-) and zebrin-positive (Z+) modules (Zhou et al., 2014). Here, using gain-of-function and loss-of-function mouse models, we show that transient receptor potential cation channel C3 (TRPC3) controls the simple spike activity of Z-, but not Z+ PCs. In addition, TRPC3 regulates complex spike rate and their interaction with simple spikes, exclusively in Z- PCs. At the behavioral level, TRPC3 loss-of-function mice show impaired eyeblink conditioning, which is related to Z- modules, whereas compensatory eye movement adaptation, linked to Z+ modules, is intact. Together, our results indicate that TRPC3 is a major contributor to the cellular heterogeneity that introduces distinct physiological properties in PCs, conjuring functional heterogeneity in cerebellar sensorimotor integration.


Assuntos
Variação Biológica da População , Cerebelo/citologia , Células de Purkinje/fisiologia , Canais de Cátion TRPC/metabolismo , Potenciais de Ação , Animais , Camundongos
13.
Sci Adv ; 4(10): eaas9426, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30306129

RESUMO

Pavlovian eyeblink conditioning has been used extensively to study the neural mechanisms underlying associative and motor learning. During this simple learning task, memory formation takes place at Purkinje cells in defined areas of the cerebellar cortex, which acquire a strong temporary suppression of their activity during conditioning. Yet, it is unknown which neuronal plasticity mechanisms mediate this suppression. Two potential mechanisms include long-term depression of parallel fiber to Purkinje cell synapses and feed-forward inhibition by molecular layer interneurons. We show, using a triple transgenic approach, that only concurrent disruption of both these suppression mechanisms can severely impair conditioning, highlighting that both processes can compensate for each other's deficits.


Assuntos
Condicionamento Palpebral/fisiologia , Fibras Nervosas/fisiologia , Células de Purkinje/fisiologia , Receptores de AMPA/genética , Animais , Feminino , Interneurônios/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Sinapses/fisiologia
14.
J Neurosci ; 38(30): 6751-6765, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29934353

RESUMO

Corticotropin-releasing factor (CRF) and its type 1 receptor (CRFR1) play an important role in the responses to stressful challenges. Despite the well established expression of CRFR1 in granular cells (GrCs), its role in procedural motor performance and memory formation remains elusive. To investigate the role of CRFR1 expression in cerebellar GrCs, we used a mouse model depleted of CRFR1 in these cells. We detected changes in the cellular learning mechanisms in GrCs depleted of CRFR1 in that they showed changes in intrinsic excitability and long-term synaptic plasticity. Analysis of cerebella transcriptome obtained from KO and control mice detected prominent alterations in the expression of calcium signaling pathways components. Moreover, male mice depleted of CRFR1 specifically in GrCs showed accelerated Pavlovian associative eye-blink conditioning, but no differences in baseline motor performance, locomotion, or fear and anxiety-related behaviors. Our findings shed light on the interplay between stress-related central mechanisms and cerebellar motor conditioning, highlighting the role of the CRF system in regulating particular forms of cerebellar learning.SIGNIFICANCE STATEMENT Although it is known that the corticotropin-releasing factor type 1 receptor (CRFR1) is highly expressed in the cerebellum, little attention has been given to its role in cerebellar functions in the behaving animal. Moreover, most of the attention was directed at the effect of CRF on Purkinje cells at the cellular level and, to this date, almost no data exist on the role of this stress-related receptor in other cerebellar structures. Here, we explored the behavioral and cellular effect of granular cell-specific ablation of CRFR1 We found a profound effect on learning both at the cellular and behavioral levels without an effect on baseline motor skills.


Assuntos
Cerebelo/metabolismo , Aprendizagem/fisiologia , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Animais , Comportamento Animal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout
15.
Behav Brain Res ; 337: 252-255, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28893553

RESUMO

Caffeine is one of the most widely used drugs in the world. In the brain, caffeine acts as an antagonist for the adenosine A1 and A2B receptors. Since A1 receptors are highly concentrated in the cortex of the cerebellum, we hypothesized that caffeine could potentially affect learning tasks that require the cerebellar cortex, such as eyeblink conditioning. To test this hypothesis, we examined the effect of low (5mg/kg) and high (50mg/kg) doses of caffeine, injected intraperitoneally before training, on eyeblink conditioning in mice. The results show that, at the dosages we used, caffeine affects neither the rate of acquisition, nor the timing of the onset or peak of the conditioned blink responses. Therefore, we conclude that caffeine neither improves nor worsens performance on eyeblink conditioning.


Assuntos
Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Palpebral/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Física
16.
Elife ; 62017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29243588

RESUMO

While research on the cerebellar cortex is crystallizing our understanding of its function in learning behavior, many questions surrounding its downstream targets remain. Here, we evaluate the dynamics of cerebellar interpositus nucleus (IpN) neurons over the course of Pavlovian eyeblink conditioning. A diverse range of learning-induced neuronal responses was observed, including increases and decreases in activity during the generation of conditioned blinks. Trial-by-trial correlational analysis and optogenetic manipulation demonstrate that facilitation in the IpN drives the eyelid movements. Adaptive facilitatory responses are often preceded by acquired transient inhibition of IpN activity that, based on latency and effect, appear to be driven by complex spikes in cerebellar cortical Purkinje cells. Likewise, during reflexive blinks to periocular stimulation, IpN cells show excitation-suppression patterns that suggest a contribution of climbing fibers and their collaterals. These findings highlight the integrative properties of subcortical neurons at the cerebellar output stage mediating conditioned behavior.


Assuntos
Núcleos Cerebelares/fisiologia , Condicionamento Palpebral , Neurônios/fisiologia , Animais , Camundongos , Optogenética
17.
PLoS One ; 12(5): e0177849, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542383

RESUMO

A growing body of evidence suggests that the cerebellum is involved in both cognition and language. Abnormal cerebellar development may contribute to neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD), autism, fetal alcohol syndrome, dyslexia, and specific language impairment. Performance in eyeblink conditioning, which depends on the cerebellum, can potentially be used to clarify the neural mechanisms underlying the cerebellar dysfunction in disorders like these. However, we must first understand how the performance develops in children who do not have a disorder. In this study we assessed the performance in eyeblink conditioning in 42 typically developing children between 6 and 11 years old as well as in 26 adults. Older children produced more conditioned eyeblink responses than younger children and adults produced more than children. In addition, females produced more conditioned eyeblink responses than males among both children and adults. These results highlight the importance of considering the influence of age and sex on the performance when studying eyeblink conditioning as a measure of cerebellar development.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Piscadela/fisiologia , Condicionamento Palpebral/fisiologia , Caracteres Sexuais , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
18.
Hum Brain Mapp ; 38(8): 3957-3974, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28474470

RESUMO

Classical delay eyeblink conditioning is likely the most commonly used paradigm to study cerebellar learning. As yet, few studies have focused on extinction and savings of conditioned eyeblink responses (CRs). Saving effects, which are reflected in a reacquisition after extinction that is faster than the initial acquisition, suggest that learned associations are at least partly preserved during extinction. In this study, we tested the hypothesis that acquisition-related plasticity is nihilated during extinction in the cerebellar cortex, but retained in the cerebellar nuclei, allowing for faster reacquisition. Changes of 7 T functional magnetic resonance imaging (fMRI) signals were investigated in the cerebellar cortex and nuclei of young and healthy human subjects. Main effects of acquisition, extinction, and reacquisition against rest were calculated in conditioned stimulus-only trials. First-level ß values were determined for a spherical region of interest (ROI) around the acquisition peak voxel in lobule VI, and dentate and interposed nuclei ipsilateral to the unconditioned stimulus. In the cerebellar cortex and nuclei, fMRI signals were significantly lower in extinction compared to acquisition and reacquisition, but not significantly different between acquisition and reacquisition. These findings are consistent with the theory of bidirectional learning in both the cerebellar cortex and nuclei. It cannot explain, however, why conditioned responses reappear almost immediately in reacquisition following extinction. Although the present data do not exclude that part of the initial memory remains in the cerebellum in extinction, future studies should also explore changes in extracerebellar regions as a potential substrate of saving effects. Hum Brain Mapp 38:3957-3974, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Córtex Cerebelar/fisiologia , Condicionamento Palpebral/fisiologia , Extinção Psicológica/fisiologia , Imageamento por Ressonância Magnética , Adolescente , Adulto , Análise de Variância , Piscadela/fisiologia , Mapeamento Encefálico , Córtex Cerebelar/diagnóstico por imagem , Núcleos Cerebelares/diagnóstico por imagem , Núcleos Cerebelares/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Testes Neuropsicológicos , Adulto Jovem
19.
Cephalalgia ; 37(2): 177-190, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27059879

RESUMO

Objective The objective of this article is to obtain detailed quantitative assessment of cerebellar function and structure in unselected migraine patients and controls from the general population. Methods A total of 282 clinically well-defined participants (migraine with aura n = 111; migraine without aura n = 89; non-migraine controls n = 82; age range 43-72; 72% female) from a population-based study were subjected to a range of sensitive and validated cerebellar tests that cover functions of all main parts of the cerebellar cortex, including cerebrocerebellum, spinocerebellum, and vestibulocerebellum. In addition, all participants underwent magnetic resonance imaging (MRI) of the brain to screen for cerebellar lesions. As a positive control, the same cerebellar tests were conducted in 13 patients with familial hemiplegic migraine type 1 (FHM1; age range 19-64; 69% female) all carrying a CACNA1A mutation known to affect cerebellar function. Results MRI revealed cerebellar ischemic lesions in 17/196 (8.5%) migraine patients and 3/79 (4%) controls, which were always located in the posterior lobe except for one control. With regard to the cerebellar tests, there were no differences between migraine patients with aura, migraine patients without aura, and controls for the: (i) Purdue-pegboard test for fine motor skills (assembly scores p = 0.1); (ii) block-design test for visuospatial ability (mean scaled scores p = 0.2); (iii) prism-adaptation task for limb learning (shift scores p = 0.8); (iv) eyeblink-conditioning task for learning-dependent timing (peak-time p = 0.1); and (v) body-sway test for balance capabilities (pitch velocity score under two-legs stance condition p = 0.5). Among migraine patients, those with cerebellar ischaemic lesions performed worse than those without lesions on the assembly scores of the pegboard task ( p < 0.005), but not on the primary outcome measures of the other tasks. Compared with controls and non-hemiplegic migraine patients, FHM1 patients showed substantially more deficits on all primary outcomes, including Purdue-peg assembly ( p < 0.05), block-design scaled score ( p < 0.001), shift in prism-adaptation ( p < 0.001), peak-time of conditioned eyeblink responses ( p < 0.05) and pitch-velocity score during stance-sway test ( p < 0.001). Conclusions Unselected migraine patients from the general population show normal cerebellar functions despite having increased prevalence of ischaemic lesions in the cerebellar posterior lobe. Except for an impaired pegboard test revealing deficits in fine motor skills, these lesions appear to have little functional impact. In contrast, all cerebellar functions were significantly impaired in participants with FHM1.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Transtornos de Enxaqueca/diagnóstico por imagem , Vigilância da População , Adulto , Idoso , Isquemia Encefálica/fisiopatologia , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/fisiopatologia , Estimulação Luminosa/métodos , Vigilância da População/métodos , Desempenho Psicomotor/fisiologia , Adulto Jovem
20.
Nat Commun ; 7: 12627, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581745

RESUMO

Loss-of-function mutations in the gene encoding the postsynaptic scaffolding protein SHANK2 are a highly penetrant cause of autism spectrum disorders (ASD) involving cerebellum-related motor problems. Recent studies have implicated cerebellar pathology in the aetiology of ASD. Here we evaluate the possibility that cerebellar Purkinje cells (PCs) represent a critical locus of ASD-like pathophysiology in mice lacking Shank2. Absence of Shank2 impairs both PC intrinsic plasticity and induction of long-term potentiation at the parallel fibre to PC synapse. Moreover, inhibitory input onto PCs is significantly enhanced, most prominently in the posterior lobe where simple spike (SS) regularity is most affected. Using PC-specific Shank2 knockouts, we replicate alterations of SS regularity in vivo and establish cerebellar dependence of ASD-like behavioural phenotypes in motor learning and social interaction. These data highlight the importance of Shank2 for PC function, and support a model by which cerebellar pathology is prominent in certain forms of ASD.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Células de Purkinje/patologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA