Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
PLoS One ; 15(2): e0228670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32045455

RESUMO

BACKGROUND: Complex mosaic structures of HIV-1 were found in the Democratic Republic of Congo (DRC). Currently, there is limited information on the circulating HIV-1 strains, the distribution of these strains and antiretroviral (ART) resistant viruses in different regions of the country, and the HIV-1 strains harbored by the high-risk groups like female sex workers (FSW) reported to be the source of recombinant and ART resistant viruses. METHODS: Dried Blood Spots (DBS), collected from 325 infected FSWs in ten cities from 2012 DRC HIV/STI Integrated Biological and Behavioral Surveillance Survey, were tested for HIV-1 genotypes and antiretroviral resistance mutations. Regional segregation of HIV-1 clades was detected using phylogenetics. The significance for differences in HIV-1 subtype and drug resistance mutations were evaluated using Chi-square tests. RESULTS: There were 145 (env) and 93 (pol) sequences analyzed. Based on env sequences, the predominant subtype was A1 (44%), and recombinants as defined pol sequences comprised 35% of the total sample. Paired sequences of pol and env from DRC FSW revealed mosaic recombinant in 54% of the sequences. Distinct geographic distributions of different HIV-1 subtypes and recombinants were observed. Subtype A1 was prevalent (40%) in Goma located in the East and significantly higher than in Mbuji-Mayi (p<0.05) in the South-central region, or in Lubumbashi in the South. Antiretroviral resistance was detected in 21.5% of 93 pol sequences analyzed, with the M184I/V and K103N mutations that confer high-level resistance to NRTI and NNRTI, respectively, being the most frequent mutations. However, the K103N mutant viruses were found only in the East. CONCLUSION: HIV-1 variants found in DRC FSW reflect those reported to circulate in the general population from the corresponding geographical locations. HIV-1 mosaic genetics were readily detected in FSW. Importantly, ART resistance mutations to NNRTI and NRTI were common in the DRC sex workers.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/virologia , HIV-1/genética , Profissionais do Sexo/estatística & dados numéricos , Adolescente , Adulto , Cidades/epidemiologia , República Democrática do Congo , Feminino , Infecções por HIV/epidemiologia , HIV-1/classificação , Humanos , Pessoa de Meia-Idade , Mutação
3.
Plant Sci ; 252: 76-87, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717480

RESUMO

We have identified a viable-yellow and a lethal-yellow chlorophyll-deficient mutant in soybean. Segregation patterns suggested single-gene recessive inheritance for each mutant. The viable- and lethal-yellow plants showed significant reduction of chlorophyll a and b. Photochemical energy conversion efficiency and photochemical reflectance index were reduced in the viable-yellow plants relative to the wildtype, whereas the lethal-yellow plants showed no electron transport activity. The viable-yellow plants displayed reduced thylakoid stacking, while the lethal-yellow plants exhibited failure of proplastid differentiation into normal chloroplasts with grana. Genetic analysis revealed recessive epistatic interaction between the viable- and the lethal-yellow genes. The viable-yellow gene was mapped to a 58kb region on chromosome 2 that contained seven predicted genes. A frame shift mutation, due to a single base deletion in Glyma.02g233700, resulted in an early stop codon. Glyma.02g233700 encodes a translocon in the inner membrane of chloroplast (GmTic110) that plays a critical role in plastid biogenesis. The lethal-yellow gene was mapped to an 83kb region on chromosome 3 that contained 13 predicted genes. Based on the annotated functions, we sequenced three potential candidate genes. A single base insertion in the second exon of Glyma.03G230300 resulted in a truncated protein. Glyma.03G230300 encodes for GmPsbP, an extrinsic protein of Photosystem II that is critical for oxygen evolution during photosynthesis. GmTic110 and GmPsbP displayed highly reduced expression in the viable- and lethal-yellow mutants, respectively. The yellow phenotypes in the viable- and lethal-yellow mutants were due to the loss of function of GmTic110 or GmPsbP resulting in photooxidative stress.


Assuntos
Clorofila/fisiologia , Cloroplastos/genética , Glycine max/genética , Clorofila/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas , Análise Mutacional de DNA , Epistasia Genética , Genes Recessivos , Mutação , Complexo de Proteína do Fotossistema II/genética , Glycine max/metabolismo , Glycine max/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA