Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Immunol ; 15: 1374293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680489

RESUMO

Introduction: Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods: Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results: We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion: vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.


Assuntos
Anticorpos Antibacterianos , Aderência Bacteriana , Disenteria Bacilar , Humanos , Aderência Bacteriana/imunologia , Disenteria Bacilar/imunologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/diagnóstico , Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Shigella/imunologia , Shigella/patogenicidade , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Shigella sonnei/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Células HeLa
2.
J Immunol Methods ; 528: 113652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458312

RESUMO

Streptococcus pyogenes, commonly referred to as Group A Streptococcus (Strep A), causes a spectrum of diseases, with the potential to progress into life-threatening illnesses and autoimmune complications. The escalating threat of antimicrobial resistance, stemming from the prevalent reliance on antibiotic therapies to manage Strep A infections, underscores the critical need for the development of disease control strategies centred around vaccination. Phagocytes play a critical role in controlling Strep A infections, and phagocytosis-replicating assays are essential for vaccine development. Traditionally, such assays have employed whole-blood killing or opsonophagocytic methods using HL-60 cells as neutrophil surrogates. However, assays mimicking Fcγ receptors- phagocytosis in clinical contexts are lacking. Therefore, here we introduce a flow cytometry-based method employing undifferentiated THP-1 cells as monocytic/macrophage model to swiftly evaluate the ability of human sera to induce phagocytosis of Strep A. We extensively characterize the assay's precision, linearity, and quantification limit, ensuring robustness. By testing human pooled serum, the assay proved to be suitable for the comparison of human sera's phagocytic capability against Strep A. This method offers a valuable complementary assay for clinical studies, addressing the gap in assessing FcγR-mediated phagocytosis. By facilitating efficient evaluation of Strep A -phagocyte interactions, it may contribute to elucidating the mechanisms required for the prevention of infections and inform the development of future vaccines and therapeutic advancements against Strep A infections.


Assuntos
Fagocitose , Infecções Estreptocócicas , Humanos , Citometria de Fluxo/métodos , Anticorpos Antibacterianos , Neutrófilos , Streptococcus pyogenes
3.
Front Cell Infect Microbiol ; 13: 1171213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260708

RESUMO

Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.


Assuntos
Disenteria Bacilar , Shigella , Animais , Humanos , Anticorpos Antibacterianos , Shigella/fisiologia , Imunoglobulinas , Mucosa Intestinal/microbiologia , Shigella flexneri
4.
Sci Rep ; 13(1): 274, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609665

RESUMO

The complement system provides vital immune protection against infectious agents by labeling them with complement fragments that enhance phagocytosis by immune cells. Many details of complement-mediated phagocytosis remain elusive, partly because it is difficult to study the role of individual complement proteins on target surfaces. Here, we employ serum-free methods to couple purified complement C3b onto E. coli bacteria and beads and then expose human neutrophils to these C3b-coated targets. We examine the neutrophil response using a combination of flow cytometry, confocal microscopy, luminometry, single-live-cell/single-target manipulation, and dynamic analysis of neutrophil spreading on opsonin-coated surfaces. We show that purified C3b can potently trigger phagocytosis and killing of bacterial cells via Complement receptor 1. Comparison of neutrophil phagocytosis of C3b- versus antibody-coated beads with single-bead/single-target analysis exposes a similar cell morphology during engulfment. However, bulk phagocytosis assays of C3b-beads combined with DNA-based quenching reveal that these are poorly internalized compared to their IgG1 counterparts. Similarly, neutrophils spread slower on C3b-coated compared to IgG-coated surfaces. These observations support the requirement of multiple stimulations for efficient C3b-mediated uptake. Together, our results establish the existence of a direct pathway of phagocytic uptake of C3b-coated targets and present methodologies to study this process.


Assuntos
Complemento C3b , Neutrófilos , Humanos , Neutrófilos/metabolismo , Complemento C3b/metabolismo , Escherichia coli/metabolismo , Fagocitose , Receptores de Complemento 3b/metabolismo , Proteínas do Sistema Complemento/metabolismo , Imunoglobulina G , Receptores de Complemento/metabolismo
5.
Front Immunol ; 13: 834711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359919

RESUMO

Staphylococcal protein A (SpA) is a multifunctional, highly conserved virulence factor of Staphylococcus aureus. By binding the Fc portion of all human IgG subclasses apart from IgG3, SpA interferes with antibody and complement deposition on the bacterial surface, impairing staphylococcal clearance by phagocytosis. Because of its anti-opsonic properties, SpA is not investigated as a surface antigen to mediate bacterial phagocytosis. Herein we investigate human sera for the presence of SpA-opsonizing antibodies. The screening revealed that sera containing IgG3 against SpA were able to correctly opsonize the target and drive Fcγ receptor-mediated interactions and phagocytosis. We demonstrated that IgG3 Fc is significantly more efficient in inducing phagocytosis of SpA-expressing S. aureus as compared to IgG1 Fc in an assay resembling physiological conditions. Furthermore, we show that the capacity of SpA antibodies to induce phagocytosis depends on the specific epitope recognized by the IgGs on SpA molecules. Overall, our results suggest that anti-SpA IgG3 antibodies could favor the anti-staphylococcal response in humans, paving the way towards the identification of a correlate of protection against staphylococcal infections.


Assuntos
Infecções Estafilocócicas , Proteína Estafilocócica A , Humanos , Imunoglobulina G , Proteínas Opsonizantes , Fagocitose , Staphylococcus , Staphylococcus aureus
6.
Front Immunol ; 12: 635825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679791

RESUMO

Neutrophils play a key role in the human immune response to Staphylococcus aureus infections. These professional phagocytes rapidly migrate to the site of infection to engulf bacteria and destroy them via specialized intracellular killing mechanisms. Here we describe a robust and relatively high-throughput flow cytometry assay to quantify phagocytosis of S. aureus by human neutrophils. We show that effective phagocytic uptake of S. aureus is greatly enhanced by opsonization, i.e. the tagging of microbial surfaces with plasma-derived host proteins like antibodies and complement. Our rapid assay to monitor phagocytosis can be used to study neutrophil deficiencies and bacterial evasion, but also provides a powerful tool to assess the opsonic capacity of antibodies, either in the context of natural immune responses or immune therapies.


Assuntos
Técnicas Bacteriológicas , Citometria de Fluxo , Neutrófilos/microbiologia , Fagocitose , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/metabolismo , Células Cultivadas , Ativação do Complemento , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Evasão da Resposta Imune , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteínas Opsonizantes/imunologia , Proteínas Opsonizantes/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/imunologia , Fatores de Tempo
7.
EMBO J ; 40(7): e106103, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522633

RESUMO

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed ß protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in ß represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.


Assuntos
Adesinas Bacterianas/química , Antígenos CD/química , Antígeno Carcinoembrionário/química , Moléculas de Adesão Celular/química , Adesinas Bacterianas/metabolismo , Animais , Antígenos CD/metabolismo , Sítios de Ligação , Células CHO , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Cricetinae , Cricetulus , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Células HeLa , Humanos , Ligação Proteica , Streptococcus agalactiae/metabolismo
8.
Curr Top Microbiol Immunol ; 430: 3-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32601967

RESUMO

Skin is the most exposed surface of the human body, separating the microbe-rich external environment, from the sterile inner part. When skin is breached or its homeostasis is perturbed, bacterial, fungal and viral pathogens can cause local infections or use the skin as an entry site to spread to other organs. In the last decades, it has become clear that skin provides niches for permanent microbial colonization, and it actively interacts with microorganisms. This crosstalk promotes skin homeostasis and immune maturation, preventing expansion of harmful organisms. Skin commensals, however, are often found to be skin most prevalent and dangerous pathogens. Despite the medical interest, mechanisms of colonization and invasion for most skin pathogens are poorly understood. This limitation is due to the lack of reliable skin models. Indeed, animal models do not adequately mimic neither the anatomy nor the immune response of human skin. Human 3D skin models overcome these limitations and can provide new insights into the molecular mechanisms of microbial pathogenesis. Herein, we address the strengths and weaknesses of different types of human skin models and we review the main findings obtained using these models to study skin pathogens.


Assuntos
Bactérias , Fungos , Animais , Humanos , Simbiose
9.
J Glaucoma ; 19(1): 44-50, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20075674

RESUMO

PURPOSE: To determine the effect of antiglaucomatous prostaglandin analogs on conjunctival melanogenesis. METHODS: For this pilot study, 30 glaucomatous patients treated with prostaglandin drops (alone and in association to beta-blockers) and 30 control subjects (15 healthy volunteers and 15 patients treated with beta-blockers) were included in this transversal, single masked, case-control, observational study. Skin complexion, eye color, conjunctival pigmentation, lacrimal tests, and corneal fluorescein staining were evaluated. Immunoreactivity for Tyrosinase was assayed on conjunctival imprints. RESULTS: Twenty percent of patients treated with prostaglandins and 10% of the control subjects clinically manifested conjunctival pigmentation (P=0.279). Only 4% (8/198) of the conjunctival specimens were positive to Tyrosinase immunostaining, with no statistically significant difference among the groups (P=0.449). In all cases, the proportion of positive cells was below 4%. When compared with subjects having negative specimens, those with positive immunostains did not show any statistically significant difference in skin complexion, eye color or exposure to irritants, and ultraviolet (P>0.05). CONCLUSIONS: According to our preliminary results, prostaglandin antiglaucomatous analogs do not significantly enhance pigmentation in the superficial layers of the conjunctiva. The existence of the Tyrosinase enzyme in the superficial layers of the conjunctiva suggests that basal melanocytes may transfer their melanogenic apparatus to superficial epithelial cells.


Assuntos
Anti-Hipertensivos/administração & dosagem , Túnica Conjuntiva/efeitos dos fármacos , Melaninas/metabolismo , Prostaglandinas F Sintéticas/administração & dosagem , Antagonistas Adrenérgicos beta/administração & dosagem , Idoso , Estudos de Casos e Controles , Túnica Conjuntiva/metabolismo , Quimioterapia Combinada , Cor de Olho , Feminino , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Humanos , Masculino , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Pessoa de Meia-Idade , Monofenol Mono-Oxigenase/metabolismo , Soluções Oftálmicas/administração & dosagem , Projetos Piloto , Método Simples-Cego , Pigmentação da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA