Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Schizophr Bull ; 50(2): 403-417, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38102721

RESUMO

BACKGROUND AND HYPOTHESES: Previous studies revealed innate immune system activation in people with schizophrenia (SZ), potentially mediated by endogenous pathogen recognition receptors, notably Toll-like receptors (TLR). TLRs are activated by pathogenic molecules like bacterial lipopolysaccharides (TLR1 and TLR4), viral RNA (TLR3), or both (TLR8). Furthermore, the complement system, another key component of innate immunity, has previously been linked to SZ. STUDY DESIGN: Peripheral mRNA levels of TLR1, TLR3, TLR4, and TLR8 were compared between SZ and healthy controls (HC). We investigated their relationship with immune activation through complement expression and cortical thickness of the cingulate gyrus, a region susceptible to immunological hits. TLR mRNA levels and peripheral complement receptor mRNA were extracted from 86 SZ and 77 HC white blood cells; structural MRI scans were conducted on a subset. STUDY RESULTS: We found significantly higher TLR4 and TLR8 mRNA levels and lower TLR3 mRNA levels in SZ compared to HC. TLRs and complemental factors were significantly associated in SZ and HC, with the strongest deviations of TLR mRNA levels in the SZ subgroup having elevated complement expression. Cortical thickness of the cingulate gyrus was inversely associated with TLR8 mRNA levels in SZ, and with TLR4 and TLR8 levels in HC. CONCLUSIONS: The study underscores the role of innate immune activation in schizophrenia, indicating a coordinated immune response of TLRs and the complement system. Our results suggest there could be more bacterial influence (based on TLR 4 levels) as opposed to viral influence (based on TLR3 levels) in schizophrenia. Specific TLRs were associated with brain cortical thickness reductions of limbic brain structures.


Assuntos
Esquizofrenia , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Afinamento Cortical Cerebral , RNA Mensageiro/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
2.
J Neuroimmunol ; 364: 577813, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35093761

RESUMO

Maternal immune activation (MIA) with poly(I:C) is a preclinical paradigm for schizophrenia and autism research. Methodological variations, including poly(I:C) molecular weight, contribute to inconsistencies in behavioural and molecular outcomes. We established in Wistar rats that 4 mg/kg high molecular weight (HMW)-poly(I:C) on GD19 induces maternal sickness, smaller litters and maternal elevations of serum cytokines, including increases in monocyte chemoattractants. In adult offspring, we found that males have higher serum cytokines than females, and MIA did not alter peripheral cytokines in either sex. Our study will contribute to the effective use of the MIA model to elucidate the neurobiology of neurodevelopmental disorders.


Assuntos
Proteínas Quimioatraentes de Monócitos/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Poli I-C/toxicidade , Complicações Infecciosas na Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Masculino , Poli I-C/imunologia , Gravidez , Ratos , Ratos Wistar
3.
Brain Behav Immun ; 101: 423-434, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34808287

RESUMO

BACKGROUND: There is growing evidence for complement system involvement in the pathophysiology of schizophrenia, although the extent and magnitude of complement factor disturbances has not been fully reported. It also remains unclear whether complement abnormalities are characteristic of all patients with schizophrenia or whether they are representative of a subgroup of patients who show signs of heightened inflammation. The aim of the present study was to quantify and compare the levels of a range of complement factors, receptors and regulators in healthy controls and people with schizophrenia and to determine the extent to which the levels of these peripheral molecules relate to measures of brain structure, particularly cortical thickness. METHOD: Seventy-five healthy controls and 90 patients with schizophrenia or schizoaffective disorder were included in the study. Peripheral blood samples were collected from all participants and mRNA expression was quantified in 20 complement related genes, four complement proteins, as well as for four cytokines. T1-weighted structural MRI scans were acquired and analysed to determine cortical thickness measures. RESULTS: There were significant increases in peripheral mRNA encoding receptors (C5ar1, CR1, CR3a), regulators (CD55, C59) and protein concentrations (C3, C3b, C4) in people with schizophrenia relative to healthy controls. C4a expression was significantly increased in a subgroup of patients displaying elevated peripheral cytokine levels. A higher inflammation index score derived from mRNA expression patterns predicted reductions in cortical thickness in the temporal lobe (superior temporal gyrus, transverse temporal gyrus, fusiform gyrus, insula) in patients with schizophrenia and healthy controls. CONCLUSIONS: Analysis of all three major complement pathways supports increased complement activity in schizophrenia and also shows that peripheral C4a up-regulation is related to increased peripheral pro-inflammatory cytokines in healthy controls. Our region-specific, neuroimaging findings linked to an increased peripheral complement mRNA expression pattern suggests a role for complement in cortical thinning. Further studies are required to further clarify clinical and neurobiological consequences of aberrant complement levels in schizophrenia and related psychoses.


Assuntos
Esquizofrenia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Proteínas do Sistema Complemento , Citocinas/metabolismo , Humanos , Inflamação , Imageamento por Ressonância Magnética/métodos , RNA Mensageiro
4.
Schizophr Bull ; 47(2): 542-551, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33085749

RESUMO

INTRODUCTION: Clarifying the role of neuroinflammation in schizophrenia is subject to its detection in the living brain. Free-water (FW) imaging is an in vivo diffusion-weighted magnetic resonance imaging (dMRI) technique that measures water molecules freely diffusing in the brain and is hypothesized to detect inflammatory processes. Here, we aimed to establish a link between peripheral markers of inflammation and FW in brain white matter. METHODS: All data were obtained from the Australian Schizophrenia Research Bank (ASRB) across 5 Australian states and territories. We first tested for the presence of peripheral cytokine deregulation in schizophrenia, using a large sample (N = 1143) comprising the ASRB. We next determined the extent to which individual variation in 8 circulating pro-/anti-inflammatory cytokines related to FW in brain white matter, imaged in a subset (n = 308) of patients and controls. RESULTS: Patients with schizophrenia showed reduced interleukin-2 (IL-2) (t = -3.56, P = .0004) and IL-12(p70) (t = -2.84, P = .005) and increased IL-6 (t = 3.56, P = .0004), IL-8 (t = 3.8, P = .0002), and TNFα (t = 4.30, P < .0001). Higher proinflammatory signaling of IL-6 (t = 3.4, P = .0007) and TNFα (t = 2.7, P = .0007) was associated with higher FW levels in white matter. The reciprocal increases in serum cytokines and FW were spatially widespread in patients encompassing most major fibers; conversely, in controls, the relationship was confined to the anterior corpus callosum and thalamic radiations. No relationships were observed with alternative dMRI measures, including the fractional anisotropy and tissue-related FA. CONCLUSIONS: We report widespread deregulation of cytokines in schizophrenia and identify inflammation as a putative mechanism underlying increases in brain FW levels.


Assuntos
Água Corporal/diagnóstico por imagem , Citocinas/sangue , Inflamação , Esquizofrenia , Substância Branca , Adulto , Austrália , Estudos Transversais , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Humanos , Inflamação/sangue , Inflamação/diagnóstico por imagem , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Esquizofrenia/sangue , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/imunologia , Esquizofrenia/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
5.
Front Immunol ; 11: 2002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133060

RESUMO

Increased cytokine and inflammatory-related transcripts are found in the ventral midbrain, a dopamine neuron-rich region associated with schizophrenia symptoms. In fact, half of schizophrenia cases can be defined as having a "high inflammatory/immune biotype." Recent studies implicate both complement and macrophages in cortical neuroinflammation in schizophrenia. Our aim was to determine whether measures of transcripts related to phagocytosis/macrophages (CD163, CD64, and FN1), or related to macrophage adhesion [intercellular adhesion molecule 1 (ICAM1)], or whether CD163+ cell density, as well as protein and/or gene expression of complement pathway activators (C1qA) and mediators (C3 or C4), are increased in the midbrain in schizophrenia, especially in those with a high inflammatory biotype. We investigated whether complement mRNA levels correlate with macrophage and/or microglia and/or astrocyte markers. We found CD163+ cells around blood vessels and in the parenchyma and increases in ICAM1, CD163, CD64, and FN1 mRNAs as well as increases in all complement transcripts in the midbrain of schizophrenia cases with high inflammation. While we found positive correlations between complement transcripts (C1qA and C3) and microglia or astrocyte markers across diagnostic and inflammatory subgroups, the only unique strong positive correlation was between CD163 and C1qA mRNAs in schizophrenia cases with high inflammation. Our study is the first to suggest that more circulating macrophages may be attracted to the midbrain in schizophrenia, and that increased macrophages are linked to increased complement pathway activation in tissue and may contribute to dopamine dysregulation in schizophrenia. Single-cell transcriptomic studies and mechanistic preclinical studies are required to test these possibilities.


Assuntos
Complemento C1q/metabolismo , Complemento C3/metabolismo , Macrófagos/fisiologia , Mesencéfalo/fisiologia , Esquizofrenia/imunologia , Adulto , Idoso , Estudos de Coortes , Complemento C1q/genética , Complemento C3/genética , Complemento C4/genética , Complemento C4/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima , Adulto Jovem
6.
Mol Psychiatry ; 25(11): 2860-2872, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30940904

RESUMO

The kynurenine pathway (KP) of tryptophan (TRP) catabolism links immune system activation with neurotransmitter signaling. The KP metabolite kynurenic acid (KYNA) is increased in the brains of people with schizophrenia. We tested the extent to which: (1) brain KP enzyme mRNAs, (2) brain KP metabolites, and (3) plasma KP metabolites differed on the basis of elevated cytokines in schizophrenia vs. control groups and the extent to which plasma KP metabolites were associated with cognition and brain volume in patients displaying elevated peripheral cytokines. KP enzyme mRNAs and metabolites were assayed in two independent postmortem brain samples from a total of 71 patients with schizophrenia and 72 controls. Plasma KP metabolites, cognition, and brain volumes were measured in an independent cohort of 96 patients with schizophrenia and 81 healthy controls. Groups were stratified based on elevated vs. normal proinflammatory cytokine mRNA levels. In the prefrontal cortex (PFC), kynurenine (KYN)/TRP ratio, KYNA levels, and mRNA for enzymes, tryptophan dioxygenase (TDO) and kynurenine aminotransferases (KATI/II), were significantly increased in the high cytokine schizophrenia subgroup. KAT mRNAs significantly correlated with mRNA for glial fibrillary acidic protein in patients. In plasma, the high cytokine schizophrenia subgroup displayed an elevated KYN/TRP ratio, which correlated inversely with attention and dorsolateral prefrontal cortex (DLPFC) volume. This study provides further evidence for the role of inflammation in a subgroup of patients with schizophrenia and suggests a molecular mechanism through which inflammation could lead to schizophrenia. Proinflammatory cytokines may elicit conversion of TRP to KYN in the periphery and increase the N-methyl-D-aspartate receptor antagonist KYNA via increased KAT mRNA and possibly more enzyme synthesis activity in brain astrocytes,  leading to DLPFC volume loss, and attention impairment in schizophrenia.


Assuntos
Atenção , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Cinurenina/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia , Adulto , Feminino , Humanos , Ácido Cinurênico/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
J Neuroinflammation ; 14(1): 188, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923068

RESUMO

BACKGROUND: Increases in pro-inflammatory cytokines are found in the brain and blood of people with schizophrenia. However, increased cytokines are not evident in all people with schizophrenia, but are found in a subset. The cytokine changes that best define this subset, termed the "elevated inflammatory biotype", are still being identified. METHODS: Using quantitative RT-PCR, we measured five cytokine mRNAs (IL-1ß, IL-2 IL-6, IL-8 and IL-18) from peripheral blood of healthy controls and of people with schizophrenia or schizoaffective disorder (n = 165). We used a cluster analysis of the transcript levels to define those with low and those with elevated levels of cytokine expression. From the same cohort, eight cytokine proteins (IL-1ß, IL-2, IL-6, IL-8, IL-10, IL-12, IFNγ and TNFα) were measured in serum and plasma using a Luminex Magpix-based assay. We compared peripheral mRNA and protein levels across diagnostic groups and between those with low and elevated levels of cytokine expression according to our transcription-based cluster analysis. RESULTS: We found an overall decrease in the anti-inflammatory IL-2 mRNA (p = 0.006) and an increase in three serum cytokines, IL-6 (p = 0.010), IL-8 (p = 0.024) and TNFα (p < 0.001) in people with schizophrenia compared to healthy controls. A greater percentage of people with schizophrenia (48%) were categorised into the elevated inflammatory biotype compared to healthy controls (33%). The magnitude of increase in IL-1ß, IL-6, IL-8 and IL-10 mRNAs in people in the elevated inflammation biotype ranged from 100 to 220% of those in the non-elevated inflammatory biotype and was comparable between control and schizophrenia groups. Blood cytokine protein levels did not correlate with cytokine mRNA levels, and plasma levels of only two cytokines distinguished the elevated and low inflammatory biotypes, with IL-1ß significantly increased in the elevated cytokine control group and IL-8 significantly increased in the elevated cytokine schizophrenia group. CONCLUSIONS: Our results confirm that individuals with schizophrenia are more likely to have elevated levels of inflammation compared to controls. We suggest that efforts to define inflammatory status based on peripheral measures need to consider both mRNA and protein measures as each have distinct advantages and disadvantages and can yield different results.


Assuntos
Biomarcadores/sangue , Citocinas/sangue , Transtornos Psicóticos/sangue , Esquizofrenia/sangue , Adulto , Feminino , Humanos , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Aging Cell ; 16(5): 1195-1199, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28766905

RESUMO

Reduced neurogenesis in the aging mammalian hippocampus has been linked to cognitive deficits and increased risk of dementia. We utilized postmortem human hippocampal tissue from 26 subjects aged 18-88 years to investigate changes in expression of six genes representing different stages of neurogenesis across the healthy adult lifespan. Progressive and significant decreases in mRNA levels of the proliferation marker Ki67 (MKI67) and the immature neuronal marker doublecortin (DCX) were found in the healthy human hippocampus over the lifespan. In contrast, expression of genes for the stem cell marker glial fibrillary acidic protein delta and the neuronal progenitor marker eomesodermin was unchanged with age. These data are consistent with a persistence of the hippocampal stem cell population with age. Age-associated expression of the proliferation and immature neuron markers MKI67 and DCX, respectively, was unrelated, suggesting that neurogenesis-associated processes are independently altered at these points in the development from stem cell to neuron. These data are the first to demonstrate normal age-related decreases at specific stages of adult human hippocampal neurogenesis.


Assuntos
Hipocampo/metabolismo , Antígeno Ki-67/genética , Proteínas Associadas aos Microtúbulos/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Proliferação de Células , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Envelhecimento Saudável/genética , Envelhecimento Saudável/metabolismo , Hipocampo/crescimento & desenvolvimento , Humanos , Antígeno Ki-67/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Células-Tronco Neurais/citologia , Neurônios/citologia , Neuropeptídeos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
10.
Horm Behav ; 70: 73-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25747465

RESUMO

Although sex steroids are known to modulate brain dopamine, it is still unclear how testosterone modifies locomotor behaviour controlled, at least in part, by striatal dopamine in adolescent males. Our previous work suggests that increasing testosterone during adolescence may bias midbrain neurons to synthesise more dopamine. We hypothesised that baseline and amphetamine-induced locomotion would differ in adult males depending on testosterone exposure during adolescence. We hypothesised that concomitant stimulation of estrogen receptor signaling, through a selective estrogen receptor modulator (SERM), raloxifene, can counter testosterone effects on locomotion. Male Sprague-Dawley rats at postnatal day 45 were gonadectomised (G) or sham-operated (S) prior to the typical adolescent testosterone increase. Gonadectomised rats were either given testosterone replacement (T) or blank implants (B) for six weeks and sham-operated (i.e. intact or endogenous testosterone group) were given blank implants. Subgroups of sham-operated, gonadectomised and gonadectomised/testosterone-replaced rats were treated with raloxifene (R, 5mg/kg) or vehicle (V), daily for the final four weeks. There were six groups (SBV, GBV, GTV, SBR, GBR, GTR). Saline and amphetamine-induced (1.25mg/kg) locomotion in the open field was measured at PND85. Gonadectomy increased amphetamine-induced locomotion compared to rats with endogenous or with exogenous testosterone. Raloxifene increased amphetamine-induced locomotion in rats with either endogenous or exogenous testosterone. Amphetamine-induced locomotion was negatively correlated with testosterone and this relationship was abolished by raloxifene. Lack of testosterone during adolescence potentiates and testosterone exposure during adolescence attenuates amphetamine-induced locomotion. Treatment with raloxifene appears to potentiate amphetamine-induced locomotion and to have an opposite effect to that of testosterone in male rats.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Atividade Motora/efeitos dos fármacos , Cloridrato de Raloxifeno/antagonistas & inibidores , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Testosterona/farmacologia , Animais , Dopamina/metabolismo , Sinergismo Farmacológico , Masculino , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Orquiectomia , Tamanho do Órgão/efeitos dos fármacos , Cloridrato de Raloxifeno/farmacologia , Ratos , Ratos Sprague-Dawley , Glândulas Seminais/anatomia & histologia , Glândulas Seminais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA