Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 73(22): 7582-7595, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36194426

RESUMO

Aging in perennial plants is traditionally observed in terms of changes in end-of-season biomass; however, the driving phenological and physiological changes are poorly understood. We found that 3-year-old (mature) stands of the perennial grass Miscanthus×giganteus had 19-30% lower Anet than 1-year-old M.×giganteus (juvenile) stands; 10-34% lower maximum carboxylation rates of Rubisco and 34% lower light-saturated Anet (Asat). These changes could be related to nitrogen (N) limitations, as mature plants were larger and had 14-34% lower leaf N on an area basis (Na) than juveniles. However, N fertilization restored Na to juvenile levels but compensated only 50% of the observed decline in leaf photosynthesis with age. Comparison of leaf photosynthesis per unit of leaf N (PNUE) showed that mature stands had at least 26% lower PNUE than juvenile stands across all N fertilization rates, suggesting that other factors, besides N, may be limiting photosynthesis in mature stands. We hypothesize that sink limitations in mature stands could be causing feedback inhibition of photosynthesis which is associated with the age-related decline in photosynthesis.


Assuntos
Nitrogênio , Poaceae
2.
J Exp Bot ; 66(14): 4395-401, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25873682

RESUMO

Poor first winter survival in Miscanthus × giganteus has been anecdotally attributed to incomplete first autumn senescence, but these assessments never paired first-year with older M. × giganteus in side-by-side trials to separate the effect of weather from stand age. Here CO2 assimilation rate (A), photosystem II efficiency (ΦPSII), and leaf N concentration ([N]) were used to directly compare senescence in first, second, and third-year stands of M. × giganteus. Three M. × giganteus fields were planted with eight plots, one field each in 2009, 2010, and 2011. To quantify autumnal leaf senescence of plants within each stand age, photosynthetic and leaf [N] measurements were made twice weekly from early September until a killing frost. Following chilling events (daily temperature averages below 10 °C), photosynthetic rates in first year plants rebounded to a greater degree than those in second- and third-year plants. By the end of the growing season, first-year M. × giganteus had A and ΦPSII rates up to 4 times greater than third-year M. × giganteus, while leaf [N] was up to 2.4 times greater. The increased photosynthetic capability and leaf N status in first-year M. × giganteus suggests that the photosynthetic apparatus was not dismantled before a killing frost, thus potentially limiting nutrient translocation, and may explain why young M. × giganteus stands do not survive winter when older stands do. Because previous senescence research has primarily focused on annual or woody species, our results suggest that M. × giganteus may be an interesting herbaceous perennial system to investigate the interactive effects of plant ageing and nutrient status on senescence and may highlight management strategies that could potentially increase winter survival rates in first-year stands.


Assuntos
Folhas de Planta/fisiologia , Poaceae/fisiologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA