RESUMO
BACKGROUND: The respiratory microbiome has been associated with the etiology and disease course of asthma. OBJECTIVE: We sought to assess the nasopharyngeal microbiota in children with a severe asthma exacerbation and their associations with medication, air quality, and viral infection. METHODS: A cross-sectional study was performed among children aged 2 to 18 years admitted to the medium care unit (MCU; n = 84) or intensive care unit (ICU; n = 78) with an asthma exacerbation. For case-control analyses, we matched all cases aged 2 to 6 years (n = 87) to controls in a 1:2 ratio. Controls were participants of either a prospective case-control study or a longitudinal birth cohort (n = 182). The nasopharyngeal microbiota was characterized by 16S-rRNA-gene sequencing. RESULTS: Cases showed higher Shannon diversity index (ICU and MCU combined; P = .002) and a distinct microbial community composition when compared with controls (permutational multivariate ANOVA R2 = 1.9%; P < .001). We observed significantly higher abundance of Staphylococcus and "oral" taxa, including Neisseria, Veillonella, and Streptococcus spp. and a lower abundance of Dolosigranulum pigrum, Corynebacterium, and Moraxella spp. (MaAsLin2; q < 0.25) in cases versus controls. Furthermore, Neisseria abundance was associated with more severe disease (ICU vs MCU MaAslin2, P = .03; q = 0.30). Neisseria spp. abundance was also related with fine particulate matter exposure, whereas Haemophilus and Streptococcus abundances were related with recent inhaled corticosteroid use. We observed no correlations with viral infection. CONCLUSIONS: Our results demonstrate that children admitted with asthma exacerbations harbor a microbiome characterized by overgrowth of Staphylococcus and "oral" microbes and an underrepresentation of beneficial niche-appropriate commensals. Several of these associations may be explained by (environmental or medical) exposures, although cause-consequence relationships remain unclear and require further investigations.
Assuntos
Asma , Microbiota , Nasofaringe , Humanos , Asma/microbiologia , Criança , Pré-Escolar , Masculino , Nasofaringe/microbiologia , Feminino , Adolescente , Estudos Transversais , Estudos de Casos e Controles , RNA Ribossômico 16S/genética , Progressão da Doença , Estudos Prospectivos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificaçãoRESUMO
The optimal dose regimen for intravenous (IV) treatment in children with severe acute asthma (SAA) is still a matter of debate. We assessed the efficacy of adding a salbutamol loading dose to continuous infusion with salbutamol in children admitted to a pediatric intensive care unit (PICU) with SAA. This multicentre, placebo-controlled randomized trial in the PICUs of four tertiary care children's hospitals included children (2-18 years) with SAA admitted between 2017 and 2019. Children were randomized to receive either a loading dose IV salbutamol (15 mcg/kg, max. 750 mcg) or normal saline while on continuous salbutamol infusion. The primary outcome was the asthma score (Qureshi) 1 h after the intervention. Analysis of covariance models was used to evaluate sensitivity to change in asthma scores. Serum concentrations of salbutamol were obtained. Fifty-eight children were included (29 in the intervention group). Median baseline asthma score was 12 (IQR 10-13) in the intervention group and 11 (9-12) in the control group (p = 0.032). The asthma score 1 h after the intervention did not differ significantly between the groups (p = 0.508, ß-coefficient = 0.283). The median increase in salbutamol plasma levels 10 min after the intervention was 13 µg/L (IQR 5-24) in the intervention group and 4 µg/L (IQR 0-7) in the control group (p = 0.001). Side effects were comparable between both groups. CONCLUSION: We found no clinical benefit of adding a loading dose IV salbutamol to continuous infusion of salbutamol, in children admitted to the PICU with SAA. Clinically significant side effects from the loading dose were not encountered. WHAT IS KNOWN: ⢠Pediatric asthma guidelines struggle with an evidence-based approach for the treatment of SAA beyond the initial steps of oxygen suppletion, repetitive administration of inhaled ß2-agonists, and systemic steroids. ⢠During an SAA episode, effective delivery of inhaled drugs is unpredictable due to severe airway obstruction. WHAT IS NEW: ⢠This study found no beneficial effect of an additional loading dose IV salbutamol in children admitted to the PICU. ⢠This study found no clinically significant side effects from the loading dose.
Assuntos
Asma , Estado Asmático , Administração por Inalação , Albuterol , Asma/tratamento farmacológico , Broncodilatadores , Criança , Humanos , Unidades de Terapia Intensiva Pediátrica , Oxigênio , Solução Salina/uso terapêuticoRESUMO
RATIONALE: Severe acute asthma (SAA) can be fatal, but is often preventable. We previously observed in a retrospective cohort study, a three-fold increase in SAA paediatric intensive care (PICU) admissions between 2003 and 2013 in the Netherlands, with a significant increase during those years of numbers of children without treatment of inhaled corticosteroids (ICS). OBJECTIVES: To determine whether steroid-naïve children are at higher risk of PICU admission among those hospitalised for SAA. Furthermore, we included the secondary risk factors tobacco smoke exposure, allergic sensitisation, previous admissions and viral infections. METHODS: A prospective, nationwide multicentre study of children with SAA (2-18â years) admitted to all Dutch PICUs and four general wards between 2016 and 2018. Potential risk factors for PICU admission were assessed using logistic regression analyses. MEASUREMENTS AND MAIN RESULTS: 110 PICU and 111 general ward patients were included. The proportion of steroid-naïve children did not differ significantly between PICU and ward patients. PICU children were significantly older and more exposed to tobacco smoke, with symptoms >1â week prior to admission. Viral susceptibility was not a significant risk factor for PICU admission. CONCLUSIONS: Children with SAA admitted to a PICU were comparable to those admitted to a general ward with respect to ICS treatment prior to admission. Preventable risk factors for PICU admission were >7â days of symptoms without adjustment of therapy and exposure to tobacco smoke. Physicians who treat children with asthma must be aware of these risk factors.
RESUMO
OBJECTIVES: To prospectively evaluate quality of life (QoL) and psychosocial outcomes in children with severe acute asthma (SAA) after pediatric intensive care (PICU) admission compared to children with SAA who were admitted to a general ward (GW). In addition, we assessed post-traumatic stress (PTS) and asthma-related QoL in the parents. METHODS: A preplanned follow-up of 3-9 months of our nationwide prospective multicenter study, in which children with SAA admitted to a Dutch PICU (n=110) or GW (n=111) were enrolled between 2016-2018. Asthma-related QoL, PTS symptoms, emotional and behavioral problems, and social impact in children and/or parents were assessed with validated web-based questionnaires. RESULTS: We included 100 children after PICU and 103 after GW admission, with a response rate of 50% for the questionnaires. Median time to follow-up was 5 months (range 1-12 months). Time to reach full schooldays after admission was significantly longer in the PICU group (mean of 10 vs 4 days, p=0.001). Parents in the PICU group reported more PTS symptoms (intrusion p=0.01, avoidance p=0.01, arousal p=0.02) compared to the GW group. CONCLUSION: No significant differences were found between PICU and GW children on self-reported outcome domains, except for the time to reach full schooldays. PICU parents reported PTS symptoms more often than the GW group. Therefore, monitoring asthma symptoms and psychosocial screening of children and parents after PICU admission should both be part of standard care after SAA. This should identify those who are at risk for developing PTSD, in order to timely provide appropriate interventions. This article is protected by copyright. All rights reserved.
RESUMO
BACKGROUND: Intravenous salbutamol is used to treat children with refractory status asthmaticus, however insufficient pharmacokinetic data are available to guide initial and subsequent dosing recommendations for its intravenous use. The pharmacologic activity of salbutamol resides predominantly in the (R)-enantiomer, with little or no activity and even concerns of adverse reactions attributed to the (S)-enantiomer. OBJECTIVE: Our aim was to develop a population pharmacokinetic model to characterize the pharmacokinetic profile for intravenous salbutamol in children with status asthmaticus admitted to the pediatric intensive care unit (PICU), and to use this model to study the effect of different dosing schemes with and without a loading dose. METHODS: From 19 children (median age 4.9 years [range 9 months-15.3 years], median weight 18 kg [range 7.8-70 kg]) treated with continuous intravenous salbutamol at the PICU, plasma samples for R- and S-salbutamol concentrations (111 samples), as well as asthma scores, were collected prospectively at the same time points. Possible adverse reactions and patients' clinical data (age, sex, weight, drug doses, liver and kidney function) were recorded. With these data, a population pharmacokinetic model was developed using NONMEM 7.2. After validation, the model was used for simulations to evaluate the effect of different dosing regimens with or without a loading dose. RESULTS: A two-compartment model with separate clearance for R- and S-salbutamol (16.3 L/h and 8.8 L/h, respectively) best described the data. Weight was found to be a significant covariate for clearance and volume of distribution. No other covariates were identified. Simulations showed that a loading dose can result in higher R-salbutamol concentrations in the early phase after the start of infusion therapy, preventing accumulation of S-salbutamol. CONCLUSIONS: The pharmacokinetic model of intravenous R- and S-salbutamol described the data well and showed that a loading dose should be considered in children. This model can be used to evaluate the pharmacokinetic-pharmacodynamic relationship of intravenous salbutamol in children, and, as a next step, the effectiveness and tolerability of intravenous salbutamol in children with severe asthma.
Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacocinética , Albuterol/farmacocinética , Estado Asmático/tratamento farmacológico , Administração Intravenosa , Adolescente , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2/sangue , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Albuterol/administração & dosagem , Albuterol/sangue , Albuterol/farmacologia , Criança , Pré-Escolar , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Masculino , Modelos Teóricos , Estudos Prospectivos , Estado Asmático/metabolismoRESUMO
Nontraumatic myelopathy causes severe morbidity and is not uncommon in Africa. Clinically, patients often present with paraplegia, and extrinsic cord compression and transverse myelitis are most common causes. Data on exact pathogenesis are scanty because of limitations in diagnostic methods. In Queen Elizabeth Central Hospital, Blantyre, Malawi, we recorded consecutive patients presenting with nontraumatic paraplegia for maximally 6 months between January and July 2010 and from March to December 2011. The diagnostic workup included imaging and examining blood, stool, urine, sputum, and cerebrospinal fluid (CSF) samples for infection. After discharge, additional diagnostic tests, including screening for virus infections, borreliosis, syphilis, and schistosomiasis, were carried out in the Netherlands. The clinical diagnosis was, thus, revised in retrospect with a more accurate final differential diagnosis. Of 58 patients included, the mean age was 41 years (range, 12-83 years) and the median time between onset and presentation was 18 days (range, 0-121 days), and of 55 patients tested, 23 (42%) were HIV positive. Spinal tuberculosis (n = 24, 41%), tumors (n = 16, 28%), and transverse myelitis (n = 6, 10%) were most common; in six cases (10%), no diagnosis could be made. The additional tests yielded evidence for CSF infection with Schistosoma, Treponema pallidum, Epstein-Barr virus (EBV), HHV-6, HIV, as well as a novel cyclovirus. The diagnosis of the cause of paraplegia is complex and requires access to an magnetic resonance imaging (MRI) scan and other diagnostic (molecular) tools to demonstrate infection. The major challenge is to confirm the role of detected pathogens in the pathophysiology and to design an effective and affordable diagnostic approach.
Assuntos
Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Doenças da Medula Espinal/epidemiologia , Doenças da Medula Espinal/etiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Anticorpos Anti-HIV/sangue , Humanos , Malaui/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Adulto JovemRESUMO
Severe acute asthma (SAA) can lead to respiratory failure and can be fatal. For rational use of intravenous (IV) bronchodilators, evidence regarding the pharmacokinetics and pharmacodynamics is lacking in children. The use of a loading dose IV salbutamol is not mentioned in any international guideline, and its use varies greatly between PICUs worldwide. We describe a 17-year-old Caucasian female with SAA resulting in an out-of-hospital cardiac arrest. After basic life support and return of spontaneous circulation, the ambulance administered oxygen, inhaled salbutamol, IV magnesium sulphate, and systemic corticosteroids. Despite of this, she was still in severe respiratory distress. Therefore, a loading dose of IV salbutamol was administered, after which an immediate improvement was observed. Having a loading dose of IV salbutamol available for emergency medical services use for SAA in children with life-threatening SAA in the out-of-hospital setting is important to consider. Further study on the dose and the effect of a loading dose IV salbutamol in children with SAA is necessary.
RESUMO
The number of children requiring pediatric intensive care unit (PICU) admission for severe acute asthma (SAA) around the world has increased. OBJECTIVES: We investigated whether this trend in SAA PICU admissions is present in the Netherlands. METHODS: A multicenter retrospective cohort study across all tertiary care PICUs in the Netherlands. Inclusion criteria were children (2-18 years) hospitalized for SAA between 2003 and 2013. Data included demographic data, asthma diagnosis, treatment, and mortality. RESULTS: In the 11-year study period 590 children (660 admissions) were admitted to a PICU with a threefold increase in the number of admissions per year over time. The severity of SAA seemed unchanged, based on the first blood gas, length of stay and mortality rate (0.6%). More children received highflow nasal cannula (P < 0.001) and fewer children needed invasive ventilation (P < 0.001). In 58% of the patients the maximal intravenous (IV) salbutamol infusion rate during PICU admission was 1 mcg/kg/min. However, the number of patients treated with IV salbutamol in the referring hospitals increased significantly over time (P = 0.005). The proportion of steroid-naïve patients increased from 35% to 54% (P = 0.004), with a significant increase in both age groups (2-4 years [P = 0.026] and 5-17 years [P = 0.036]). CONCLUSIONS: The number of children requiring PICU admission for SAA in the Netherlands has increased. We speculate that this threefold increase is explained by an increasing number of steroid-naïve children, in conjunction with a lowered threshold for PICU admission, possibly caused by earlier use of salbutamol IV in the referring hospitals.