Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 77(13): 7393-400, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12805438

RESUMO

The human herpesvirus 8-encoded protein vMIP-II is a potent in vitro antagonist of many chemokine receptors believed to be associated with attraction of T cells with a type 1 cytokine profile. For the present report we have studied the in vivo potential of this viral chemokine antagonist to inhibit virus-induced T-cell-mediated inflammation. This was done by use of the well-established model system murine lymphocytic choriomeningitis virus infection. Mice were infected in the footpad, and the induced CD8(+) T-cell-dependent inflammation was evaluated in mice subjected to treatment with vMIP-II. We found that inflammation was markedly inhibited in mice treated during the efferent phase of the antiviral immune response. In vitro studies revealed that vMIP-II inhibited chemokine-induced migration of activated CD8(+) T cells, but not T-cell-target cell contact, granule exocytosis, or cytokine release. Consistent with these in vitro findings treatment with vMIP-II inhibited the adoptive transfer of a virus-specific delayed-type hypersensitivity response in vivo, but only when antigen-primed donor cells were transferred via the intravenous route and required to migrate actively, not when the cells were injected directly into the test site. In contrast to the marked inhibition of the effector phase, the presence of vMIP-II during the afferent phase of the immune response did not result in significant suppression of virus-induced inflammation. Taken together, these results indicate that chemokine-induced signals are pivotal in directing antiviral effector cells toward virus-infected organ sites and that vMIP-II is a potent inhibitor of type 1 T-cell-mediated inflammation.


Assuntos
Quimiocinas/genética , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Citometria de Fluxo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular
2.
J Biol Chem ; 277(43): 40335-41, 2002 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-12151391

RESUMO

Vascular endothelial growth factor is a specific endothelial cell mitogen that is essential for the formation of the vascular system but in the adult individual is involved in several pathological conditions, including cancer. It is a homodimeric protein that activates its receptor by binding two receptor molecules and inducing dimerization. By mixing two vascular endothelial growth factor monomers, each with different substitutions, heterodimers with only one active receptor binding site have previously been prepared. These heterodimers bind the receptor molecule but are unable to induce dimerization and activation. However, preparation of heterodimers is cumbersome, involving separate expression of different monomers, refolding the mixture, and separating heterodimers from homodimers. Here we show that a fully functional ligand can efficiently be expressed as a single protein chain containing two monomers. Single-chain vascular endothelial growth factor is functionally equivalent to the wild-type protein. By monomer-specific mutagenesis, one receptor binding site was altered. This variant competitively and specifically antagonizes the mitogenic effect of the wild-type protein on endothelial cells. The results obtained with the single-chain antagonist show the feasibility of the single-chain approach in directing alterations to single specific regions in natural homodimeric proteins that would be impossible to target in other ways.


Assuntos
Fatores de Crescimento Endotelial/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Linfocinas/fisiologia , Sequência de Aminoácidos , Células Cultivadas , Clonagem Molecular , Dimerização , Eletroforese em Gel de Poliacrilamida , Fatores de Crescimento Endotelial/química , Fatores de Crescimento Endotelial/genética , Endotélio Vascular/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfocinas/química , Linfocinas/genética , Mitose/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA