Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 533(7601): 100-4, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147028

RESUMO

Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/fisiopatologia , Linfócitos T/imunologia , Antígeno CTLA-4/metabolismo , Feminino , Citometria de Fluxo , Guiné/epidemiologia , Doença pelo Vírus Ebola/mortalidade , Humanos , Mediadores da Inflamação/imunologia , Estudos Longitudinais , Ativação Linfocitária , Masculino , Alta do Paciente , Receptor de Morte Celular Programada 1/metabolismo , Sobreviventes , Linfócitos T/metabolismo , Carga Viral
2.
Nature ; 530(7589): 228-232, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840485

RESUMO

The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.


Assuntos
Ebolavirus/genética , Monitoramento Epidemiológico , Genoma Viral/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , Aeronaves , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/classificação , Ebolavirus/patogenicidade , Guiné/epidemiologia , Humanos , Mutagênese/genética , Taxa de Mutação , Fatores de Tempo
3.
Nature ; 524(7563): 97-101, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26083749

RESUMO

West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Ebolavirus/genética , Evolução Molecular , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Filogenia , Análise Espaço-Temporal , Substituição de Aminoácidos/genética , Ebolavirus/isolamento & purificação , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Libéria/epidemiologia , Masculino , Mali/epidemiologia , Dados de Sequência Molecular , Serra Leoa/epidemiologia
4.
Mol Microbiol ; 78(5): 1130-44, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21091500

RESUMO

Helicobacter pylori is a human gastric pathogen associated with gastric and duodenal ulcers as well as gastric cancer. Mounting evidence suggests this pathogen's motility is prerequisite for successful colonization of human gastric tissues. Here, we isolated an H. pylori G27 HP0518 mutant exhibiting altered motility in comparison to its parental strain. We show that the mutant's modulated motility is linked to increased levels of O-linked glycosylation on flagellin A (FlaA) protein. Recombinant HP0518 protein decreased glycosylation levels of H. pylori flagellin in vitro, indicating that HP0518 functions in deglycosylation of FlaA protein. Furthermore, mass spectrometric analysis revealed increased glycosylation of HP0518 FlaA was due to a change in pseudaminic acid (Pse) levels on FlaA; HP0518 mutant-derived flagellin contained approximately threefold more Pse than the parental strain. Further phenotypic and molecular characterization demonstrated that the hyper-motile HP0518 mutant exhibits superior colonization capabilities and subsequently triggers enhanced CagA phosphorylation and NF-κB activation in AGS cells. Our study shows that HP0518 is involved in the deglycosylation of flagellin, thereby regulating pathogen motility. These findings corroborate the prominent function of H. pylori flagella in pathogen-host cell interactions and modulation of host cell responses, likely influencing the pathogenesis process.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelina/metabolismo , Helicobacter pylori/fisiologia , Animais , Aderência Bacteriana , Proteínas de Bactérias/genética , Linhagem Celular , Feminino , Flagelina/genética , Regulação Bacteriana da Expressão Gênica , Glicosilação , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL
5.
PLoS Biol ; 8(8)2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20808760

RESUMO

Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P(+)GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function.


Assuntos
Caveolina 1/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Neisseria gonorrhoeae/patogenicidade , Transdução de Sinais , Tirosina/metabolismo , Caveolina 1/genética , Caveolina 1/farmacologia , Linhagem Celular Tumoral , Fímbrias Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Neisseria gonorrhoeae/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
6.
FEBS J ; 276(19): 5507-20, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19691497

RESUMO

Hfq is an RNA chaperone that functions as a pleiotropic regulator for RNA metabolism in bacteria. In several pathogenic bacteria, Hfq contributes indirectly to virulence by binding to riboregulators that modulate the stability or translation efficiency of RNA transcripts. To characterize the role of Hfq in the pathogenicity of Neisseria gonorrhoeae, we generated an N. gonorrhoeae hfq mutant. Infectivity and global changes in gene expression caused by the hfq mutation in N. gonorrhoeae strain MS11 were analyzed. Transcriptional analysis using a custom-made N. gonorrhoeae microarray revealed that 369 ORFs were differentially regulated in the hfq mutant, MS11hfq, in comparison with the wild-type strain (202 were upregulated, and 167 were downregulated). The loss-of-function mutation in hfq led to pleiotropic phenotypic effects, including an altered bacterial growth rate and reduced adherence to epithelial cells. Twitching motility and microcolony formation were not affected. Hfq also appears to play a minor role in inducing the inflammatory response of infected human epithelial cells. Interleukin-8 production was slightly decreased, and activation of c-Jun N-terminal kinase, a mitogen-activated protein kinase, was reduced in MS11hfq-infected epithelial cells in comparison with wild type-infected cells. However, activation of nuclear factor kappa B, extracellular signal-regulated kinase 1/2 and p38 remained unchanged. The data presented suggest that Hfq plays an important role as a post-transcriptional regulator in N. gonorrhoeae strain MS11 but does not contribute significantly to its virulence in cell culture models.


Assuntos
Genes Bacterianos , Fator Proteico 1 do Hospedeiro/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidade , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Expressão Gênica , Teste de Complementação Genética , Fator Proteico 1 do Hospedeiro/metabolismo , Humanos , Interleucina-8/biossíntese , Microscopia Eletrônica de Transmissão , Mutagênese , Mutação , Neisseria gonorrhoeae/fisiologia , Neisseria gonorrhoeae/ultraestrutura , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virulência/genética
7.
J Mol Biol ; 368(2): 550-63, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17350042

RESUMO

The COP9 signalosome (CSN) is a regulatory particle of the ubiquitin (Ub) proteasome system (UPS) consisting of eight subunits (CSN1-CSN8). We show that the CSN stabilizes the microtubule end-binding protein 1 (EB1) towards degradation by the UPS. EB1, the master regulator of microtubule plus ends, controls microtubule growth and dynamics. Therefore, regulation of EB1 stability by the CSN has consequences for microtubule function. EB1 binds the CSN via subunit CSN5. The C terminus of EB1 is sufficient for interaction with the CSN. Dimerization of EB1 is a prerequisite for complex association and subsequent CSN-mediated phosphorylation, as revealed by studies with the EB1I224A mutant, which is unable to dimerize. In cells, EB1 and CSN co-localize to the centrosome, as demonstrated by confocal fluorescence microscopy. EB1 is ubiquitinated and its proteolysis can be inhibited by MG132, demonstrating that it is a substrate of the UPS. Its degradation is accelerated by inhibition of CSN-associated kinases. HeLa cells permanently expressing siRNAs against CSN1 (siCSN1) or CSN3 (siCSN3) exhibit reduced levels of the CSN complex accompanied by lower steady-state concentrations of EB1. In siCSN1 cells, EB1 is less phosphorylated as compared with control cells, demonstrating that the protein is most likely protected towards the UPS by CSN-mediated phosphorylation. The CSN-dependent EB1 stabilization is not due to the CSN-associated deubiquitinating enzyme USP15. Treatment with nocodazole revealed a significantly increased sensitivity of siCSN1 and siCSN3 cells towards the microtubule depolymerizing drug accompanied by a collapse of microtubule filaments. A nocodazole-induced cell-cycle arrest was partially rescued by CSN1 or EB1. These data demonstrate that the CSN-dependent protection of EB1 is important for microtubule function.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Complexo do Signalossomo COP9 , Ciclo Celular/efeitos dos fármacos , Centrossomo/efeitos dos fármacos , Dimerização , Células HeLa , Humanos , Microtúbulos/efeitos dos fármacos , Modelos Biológicos , Nocodazol/farmacologia , Oligonucleotídeos/metabolismo , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA