Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Plants (Basel) ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611526

RESUMO

Hyssop (Hyssopus officinalis L.) and oregano (Origanum vulgare L.), traditionally used for their antimicrobial properties, can be considered viable candidates for nanotechnology applications, in particular for the phytosynthesis of metal nanoparticles. The present work aims to evaluate the potential application of hyssop and oregano for the phytosynthesis of silver nanoparticles, as well as to evaluate the biological activities of their extracts and obtained nanoparticles (antioxidant potential, as well as cell viability, inflammation level and cytotoxicity in human fibroblasts HFIB-G cell line studies). In order to obtain natural extracts, two extraction methods were applied (classical temperature extraction and microwave-assisted extraction), with the extraction method having a major influence on their composition, as demonstrated by both the total phenolic compounds (significantly higher for the microwave-assisted extraction; the oregano extracts had consistently higher TPC values, compared with the hyssop extracts) and in terms of individual components identified via HPLC. The obtained nanoparticles ware characterized via X-ray diffraction (XRD) and transmission electron microscopy (TEM), with the lowest dimension nanoparticles being recorded for the nanoparticles obtained using the oregano microwave extract (crystallite size 2.94 nm through XRD, average diameter 10 nm via TEM). The extract composition and particle size also influenced the antioxidant properties (over 60% DPPH inhibition being recorded for the NPs obtained using the oregano microwave extract). Cell viability was not affected at the lowest tested concentrations, which can be correlated with the nitric oxide level. Cell membrane integrity was not affected after exposure to classic temperature hyssop extract-NPs, while the other samples led to a significant LDH increase.

2.
Materials (Basel) ; 17(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611986

RESUMO

Development of efficient controlled local release of drugs that prevent systemic side effects is a challenge for anti-osteoporotic treatments. Research for new bone-regeneration materials is of high importance. Strontium (Sr) is known as an anti-resorptive and anabolic agent useful in treating osteoporosis. In this study, we compared two different types of synthesis used for obtaining nano hydroxyapatite (HA) and Sr-containing nano hydroxyapatite (SrHA) for bone tissue engineering. Synthesis of HA and SrHA was performed using co-precipitation and hydrothermal methods. Regardless of the synthesis route for the SrHA, the intended content of Sr was 1, 5, 10, 20, and 30 molar %. The chemical, morphological, and biocompatibility properties of HA and SrHA were investigated. Based on our results, it was shown that HA and SrHA exhibited low cytotoxicity and demonstrated toxic behavior only at higher Sr concentrations.

3.
Biomedicines ; 12(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540108

RESUMO

INTRODUCTION: Prognosis after electrical storm (ES) ablation remains severe, especially in patients with recurrent sustained monomorphic ventricular tachycardia (SMVT) or progressive heart failure (HF). However, single-factor-based prediction is suboptimal and may be refined by more complex algorithms. We sought to evaluate if a novel score MSA-VT (M = moderate/severe mitral regurgitation, S = severe HF at admission, A = atrial fibrillation at admission, VT = inducible SMVT after ablation) may improve prediction of death and recurrences compared to single factors and previous scores (PAINESD, RIVA and I-VT). METHODS: A total of 101 consecutive ES ablation patients were retrospectively analyzed over a 32.8-month (IQR 10-68) interval. The MSA-VT score was calculated as the sum of the previously mentioned factors' coefficients based on hazard ratio values in Cox regression analysis. The AUC for death prediction by MSA-VT was 0.84 (p < 0.001), superior to PAINESD (AUC 0.63, p = 0.03), RIVA (AUC 0.69, p = 0.02) and I-VT (0.56, p = 0.3). MSA-VT ≥ 3 was associated with significantly higher mortality during follow-up (52.7%, p < 0.001). CONCLUSIONS: Prediction by single factors and previously published scores after ES ablation may be improved by the novel MSA-VT score; however, this requires further external validation in larger samples.

4.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069172

RESUMO

This study aimed to investigate, for the first time, the chemical composition and antioxidant activity of fluid extracts obtained from three Romanian cultivars of haskap berries (Lonicera caerulea L.) var. Loni, bitter cherries (Prunus avium var. sylvestris Ser.) var. Silva, and pomace from red grapes (Vitis vinifera L.) var. Mamaia, and their capacity to modulate in vitro steatosis, in view of developing novel anti-obesity products. Total phenolic, flavonoid, anthocyanin, and ascorbic acid content of fluid extracts was spectrophotometrically assessed and their free radical scavenging capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition assays. The Pearson coefficients showed a moderate correlation between the antioxidant activity of fluid extracts and their phenolic content, but a strong correlation between anthocyanin and ascorbic acid content. HPLC analysis identified and quantified the main phenolic compounds of chlorogenic and syringic acid, catechin, and glycosylated kaempferol, apigenin, and quercetin, in variable proportions. An in vitro experimental model of steatosis was developed in HepG2 hepatocytes treated with a mixture of free fatty acids. Cell culture analyses showed that cytocompatible concentrations of fluid extracts could significantly reduce the lipid accumulation and inhibit the reactive oxygen species, malondialdehyde, and nitric oxide secretion in stressed hepatocytes. In conclusion, these results put an emphasis on the chemical compounds' high antioxidant and liver protection capacity of unstudied fluid extracts obtained from Romanian cultivars of bitter cherries var. Silva and pomace of red grapes var. Mamaia, similar to the fluid extract of haskap berries var. Loni, in particular, the positive modulation of fat deposition next to oxidative stress and the lipid peroxidation process triggered by fatty acids in HepG2 hepatocytes. Consequently, this study indicated that these fluid extracts could be further exploited as hepatoprotective agents in liver steatosis, which provides a basis for the further development of novel extract mixtures with synergistic activity as anti-obesity products.


Assuntos
Fígado Gorduroso , Vitis , Antioxidantes/química , Frutas/química , Antocianinas/química , Romênia , Extratos Vegetais/química , Ácido Ascórbico/química , Fenóis/química , Fígado Gorduroso/tratamento farmacológico
5.
Antioxidants (Basel) ; 12(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001761

RESUMO

Ganoderma lucidum (G. lucidum) has been known for many centuries in Asian countries under different names, varying depending on the country. The objective of this review is to investigate the scientific research on the natural active bio-compounds in extracts obtained from G. lucidum with significant biological actions in the treatment of cancer. This review presents the classes of bio-compounds existing in G. lucidum that have been reported over time in the main databases and have shown important biological actions in the treatment of cancer. The results highlight the fact that G. lucidum possesses important bioactive compounds such as polysaccharides, triterpenoids, sterols, proteins, nucleotides, fatty acids, vitamins, and minerals, which have been demonstrated to exhibit multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and antioxidant action. The potential health benefits of G. lucidum are systematized based on biological actions. The findings present evidence regarding the lack of certainty about the effects of G. lucidum bio-compounds in treating different forms of cancer, which may be due to the use of different types of Ganoderma formulations, differences in the study populations, or due to drug-disease interactions. In the future, larger clinical trials are needed to clarify the potential benefits of pharmaceutical preparations of G. lucidum, standardized by the known active components in the prevention and treatment of cancer.

6.
Pharmaceutics ; 15(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37896230

RESUMO

One major problem with the overuse of antibiotics is that the microorganisms acquire resistance; thus the dose must be increased unsustainably. To overcome this problem, researchers from around the world are actively investigating new types of antimicrobials. Zinc oxide (ZnO) nanoparticles (NPs) have been proven to exhibit strong antimicrobial effects; moreover, the Food and Drugs Administration (FDA) considers ZnO as GRAS (generally recognized as safe). Many essential oils have antimicrobial activity and their components do not generate resistance over time. One of the drawbacks is the high volatility of some components, which diminishes the antimicrobial action as they are eliminated. The combination of ZnO NPs and essential oils can synergistically produce a stronger antimicrobial effect, and some of the volatile compounds can be retained on the nanoparticles' surface, ensuring a better-lasting antimicrobial effect. The samples were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and thermal analysis (TG-DSC) coupled with analysis of evolved gases using FTIR. The ZnO NPs, with a size of ~35 nm, exhibited a loading between 1.44% and 15.62%-the lower values were specific for limonene-containing oils (e.g., orange, grapefruit, bergamot, or limette), while high values were obtained from cinnamon, minzol, thyme, citronella, and lavender oils-highlighting differences among non-polar terpenes and alcohol or aldehyde derivatives. The antibacterial assay indicated the existence of a synergic action among components and a high dependency on the percentage of loaded oil. Loaded nanoparticles offer immense potential for the development of materials with specific applications, such as wound dressings or food packaging. These nanoparticles can be utilized in scenarios where burst delivery is desired or when prolonged antibacterial activity is sought.

7.
Front Cardiovasc Med ; 10: 1258373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808884

RESUMO

Background and aims: There is limited data concerning the effect of non-revascularized chronic total occlusions (NR-CTOs) after VT ablation. This study sought to evaluate the impact of NR-CTOs after ablation for electrical storm (ES). Methods: Post-hoc retrospective analysis of data regarding 64 consecutive post-myocardial infarction patients (out of which 12 patients with NR-CTOs and 52 without NR-CTOs) undergoing substrate ablation for ES with an available median follow-up of 37.53 (7.25-64.65) months. Ablation result was assessed by inducibility of sustained monomorphic VT (SMVT) during final programmed ventricular stimulation (PVS). The primary endpoints were all-cause mortality and VT/VF recurrences after ablation, respectively, stratified by the presence of NR-CTOs. The secondary endpoint was to assess the predictive effect of NR-CTOs on all-cause mortality and VT/VF recurrences in relation to other relevant prognostic factors. Results: At baseline, the presence of NR-CTOs was associated with higher bipolar BZ-to-total scar ratio (72.4% ± 17.9% vs. 52% ± 37.7%, p = 0.022) and more failure to eliminate the clinical VT (25% (3) vs. 0% (0), p < 0.001). During follow-up, overall all-cause mortality and recurrences were more frequent in the NR-CTO subgroup (75% (9) vs. 19.2% (10), log rank p = 0.003 and 58.3% vs. 23.1% (12), log rank p = 0.042 respectively). After adjusting for end-procedural residual SMVT inducibility, NR-CTOs predicted death during follow-up (HR 3.380, p = 0.009) however not recurrence (HR 1.986, p = 0.154). Conclusions: NR-CTO patients treated by RFCA for drug-refractory ES demonstrated a higher ratio of BZ-to-total-scar area. In this analysis, NR-CTO was associated with worse acute procedural results and may as well impact long-term outcomes which should be further assessed in larger patient populations.

8.
Pharmaceutics ; 15(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37765184

RESUMO

Magnetite nanoparticles (MNPs) have been intensively studied for biomedical applications, especially as drug delivery systems for the treatment of infections. Additionally, they are characterized by intrinsic antimicrobial properties owing to their capacity to disrupt or penetrate the microbial cell wall and induce cell death. However, the current focus has shifted towards increasing the control of the synthesis reaction to ensure more uniform nanoparticle sizes and shapes. In this context, microfluidics has emerged as a potential candidate method for the controlled synthesis of nanoparticles. Thus, the aim of the present study was to obtain a series of antibiotic-loaded MNPs through a microfluidic device. The structural properties of the nanoparticles were investigated through X-ray diffraction (XRD) and, selected area electron diffraction (SAED), the morphology was evaluated through transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM), the antibiotic loading was assessed through Fourier-transform infrared spectroscopy (FT-IR) and, and thermogravimetry and differential scanning calorimetry (TG-DSC) analyses, and. the release profiles of both antibiotics was determined through UV-Vis spectroscopy. The biocompatibility of the nanoparticles was assessed through the MTT assay on a BJ cell line, while the antimicrobial properties were investigated against the S. aureus, P. aeruginosa, and C. albicans strains. Results proved considerable uniformity of the antibiotic-containing nanoparticles, good biocompatibility, and promising antimicrobial activity. Therefore, this study represents a step forward towards the microfluidic development of highly effective nanostructured systems for antimicrobial therapies.

9.
Nanomaterials (Basel) ; 13(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570539

RESUMO

A composite based on calcium sulphate hemihydrate enhanced with Zn- or B-doped hydroxyapatite nanoparticles was fabricated and evaluated for bone graft applications. The investigations of their structural and morphological properties were performed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy techniques. To study the bioactive properties of the obtained composites, soaking tests in simulated body fluid (SBF) were performed. The results showed that the addition of 2% Zn results in an increase of 2.27% in crystallinity, while the addition of boron causes an increase of 5.61% compared to the undoped HAp sample. The crystallite size was found to be 10.69 ± 1.59 nm for HAp@B, and in the case of HAp@Zn, the size reaches 16.63 ± 1.83 nm, compared to HAp, whose crystallite size value was 19.44 ± 3.13 nm. The mechanical resistance of the samples doped with zinc was the highest and decreased by about 6% after immersion in SBF. Mixing HAp nanoparticles with gypsum improved cell viability compared to HAp for all concentrations (except for 200 µg/mL). Cell density decreased with increasing nanoparticle concentration, compared to gypsum, where the cell density was not significantly affected. The degree of cellular differentiation of osteoblast-type cells was more accentuated in the case of samples treated with G+HAp@B nanoparticles compared to HAp@B. Cell viability in these samples decreased inversely proportionally to the concentration of administered nanoparticles. From the point of view of cell density, this confirmed the quantitative data.

10.
Front Nutr ; 10: 1226686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637949

RESUMO

Introduction: Medicine faces nowadays the trend of increasing life expectancy of human population, with the resulting increase of degenerative age related diseases prevalence, combined with the risks of less tempered sun radiations environment exposure. Under these circumstances, our work pointed out on evaluating the effect of some xanthophyll pigments dietary supplements, actually widely recommended, for prevention of retinal degenerative damages and for slowing down the progression of such age related changes if they have already occurred. These dietary supplements are already well known for their total antioxidant activity, proven by photochemiluminescence method using Total Antioxidant Capacity in Lipid soluble-substances procedure. Materials and methods: The study recruited a number of 120 subjects equally divided on genders. The lot included a first group of 60 patients with comparable ages (all of them over 50 years and divided in 2 segments of age: 50-60 and over 60) and suffering from comparable retinal age-related degenerative abnormalities (mild/medium severity age-related macular degeneration according to Wisconsin Age-Related Maculopathy Grading System), and a second group, considered control, including a similar number of healthy, normal retina subjects belonging to same age and gender categories. There were evaluated at baseline the eye medical status and the retinal risk by specific methods: complete eye check-up, Amsler grid, specific standardized questionnaires focused on visual function and its impact on the quality of current life. Both groups, patients and control, received similar dosages of xanthophyll pigments dietary supplements including lutein and zeaxanthin during 18 months after baseline; at the end of this supplementation period a new evaluation was conducted. In the second part of the research all subjects involved received a new dietary supplement in which the same xanthophylls were enriched with C and E vitamins and oligo-elements Zinc and Copper. At the end of three years duration supplementation, the subjects were reevaluated and the paper presents the conclusions on the matter, pointing on the impact of xanthophyll supplements on visual health. Results: Correlation tests were applied to the complete set of data. Correlation tests have values between -1 and +1. The value -1 represents the negative correlation (reverse proportionality) meanwhile the value +1 represents the positive correlation (direct proportionality). The charts show the curves that are fitting experimental data. The dependence is linear in nature, and the value R2, as it approaches more the value 1, represents a better match with the experimental data (the data are in a percentage of approximately 99% on these straight lines of type y = ax + b). In the charts, there were noted the average values of the scores for healthy control patients with "Control", and the average values of the scores for the patients with existing age related degenerative retinal pathology at baseline with "Patients". Discussion: The retinal function and the impact of visual condition on health were both evaluated at baseline, 18 months and 36 months after baseline, by visual acuity, ophthalmoscopy fundus examination, Amsler test and by asking the subjects to answer the visual function questionnaires: EQ-5D, NEI-VFQ-25, as measures of health status quality and of the influence on welfare. The study revealed that under supplementation both control healthy subjects and patients with known degenerative retinal pathology included in the 50-60 years of age group evolved almost the same way, leading to the conclusion that administered xanthophyll pigments-based supplements, simple or enriched, managed to slow down the progression of abnormal degenerative vision loss to a rate comparable to physiological aging-related vision loss. It was also observed that intake of xanthophyll pigments dietary supplements preserved the general health condition and maintained relatively constant vision on the entire 36th months follow-up research duration in patients presented with existing age related degenerative retinal pathology at baseline. For healthy subjects, evaluation showed an improvement in results after dietary supplementation, with maintenance of constant vision and a significantly increase of general condition, in a positive sense. For subjects over the age of 60 dietary supplements intake was even more effective compared to younger group in providing better control of degenerative processes.

11.
Materials (Basel) ; 16(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37629839

RESUMO

Tissue engineering requires new materials that can be used to replace damaged bone parts. Since hydroxyapatite, currently widely used, has low mechanical resistance, silicate ceramics can represent an alternative. The aim of this study was to obtain porous ceramics based on diopside (CaMgSi2O6) and akermanite (Ca2MgSi2O7) obtained at low sintering temperatures. The powder synthesized by the sol-gel method was pressed in the presence of a porogenic agent represented by commercial sucrose in order to create the desired porosity. The ceramic bodies obtained after sintering thermal treatment at 1050 °C and 1250 °C, respectively, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) to determine the chemical composition. The open porosity was situated between 32.5 and 34.6%, and the compressive strength had a maximum value of 11.4 MPa for the samples sintered at 1250 °C in the presence of a 20% wt porogenic agent. A cell viability above 70% and the rapid development of an apatitic phase layer make these materials good candidates for use in hard tissue engineering.

12.
Dalton Trans ; 52(30): 10386-10401, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401566

RESUMO

Two new families of zinc/cobalt/aluminum-based pigments, with a unique composition, were obtained through the polyol method. The hydrolysis process of a mixture of Co(CH3COO)2, Zn(acac)2 and Al(acac)3 (acac- = acetylacetonate ion) in 1,4-butanediol afforded dark blue gels (wPZnxCo1-xAl), in the presence of a supplementary amount of water, and light green powders (PZnxCo1-xAl), respectively, for the water-free procedure (x = 0, 0.2, 0.4). The calcination of the precursors yielded dark green (wZnxCo1-xAl) and blue (ZnxCo1-xAl) products. XRD measurements and Rietveld refinement indicate the co-existence of three spinel phases, in different proportions: ZnxCo1-xAl2O4, Co3O4 and the defect spinel, γ-Al2.67O4. The Raman scattering and XPS spectra are in agreement with the compositions of the samples. The morphology of wZnxCo1-xAl consists of large and irregular spherical particle aggregates (ca. 5-100 mm). Smaller agglomerates (ca. 1-5 mm) with a unique silkworm cocoon-like hierarchical morphology composed of cobalt aluminate cores covered with flake-like alumina shells are formed for ZnxCo1-xAl. TEM and HR-TEM analyses revealed the formation of crystalline, polyhedral particles of 7-43 nm sizes for wZnxCo1-xAl, while for ZnxCo1-xAl, a duplex-type morphology, with small (7-13 nm) and larger (30-40 nm) particles, was found. BET assessment showed that both series of oxides are mesoporous materials, with different pore structures, with the water-free samples exhibiting the largest surface areas due, most likely, to the high percent of aluminum oxide. A chemical mechanism is proposed to highlight the role of the water amount and the nature of the starting compounds in the hydrolysis reaction products and, further, in the morpho-structural features and composition of the resulting spinel oxides. The CIE L*a*b* and C* colorimetric parameters indicate that the pigments are bright, with a moderate degree of luminosity, presenting an outstanding high blueness.

13.
Int J Biol Macromol ; 244: 125324, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37307975

RESUMO

Poly(3-hydroxybutyrate) (PHB) was blended with medium-chain-length PHAs (mcl-PHAs) for improving its flexibility while nanocellulose (NC) was added as a reinforcing agent. Even and odd-chain-length PHAs, having as main component poly(3-hydroxyoctanoate) (PHO) or poly(3-hydroxynonanoate) (PHN) were synthesized and served as PHB modifiers. The effects of PHO and PHN on the morphology, thermal, mechanical and biodegradation behaviors of PHB were different, especially in the presence of NC. The addition of mcl-PHAs decreased the storage modulus (E') of PHB blends by about 40 %. The further addition of NC mitigated this decrease bringing the E' of PHB/PHO/NC close to that of PHB and having a minor effect on the E' of PHB/PHN/NC. The biodegradability of PHB/PHN/NC was higher than that of PHB/PHO/NC, the latter's being close to that of neat PHB after soil burial for four months. The results showed a complex effect of NC, which enhanced the interaction between PHB and mcl-PHAs and decreased the size of PHO/PHN inclusions (1.9 ± 0.8/2.6 ± 0.9 µm) while increasing the accessibility of water and microorganisms during soil burial. The blown film extrusion test showed the ability of mcl-PHA and NC modified PHB to stretch forming uniform tube and supports the application of these biomaterials in the packaging sector.


Assuntos
Nanocompostos , Poli-Hidroxialcanoatos , Ácido 3-Hidroxibutírico , Materiais Biocompatíveis , Poli A , Poliésteres/metabolismo
14.
Materials (Basel) ; 16(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37374563

RESUMO

BACKGROUND: Advanced Oxidation Processes (AOPs) are the water treatment techniques that are commonly used forthe decomposition of the non-biodegradable organic pollutants. However, some pollutants are electron deficient and thus resistant to attack by reactive oxygen species (e.g., polyhalogenated compounds) but they may be degraded under reductive conditions. Therefore, reductive methods are alternative or supplementary methods to the well-known oxidative degradation ones. METHODS: In this paper, the degradation of 4,4'-isopropylidenebis(2,6-dibromophenol) (TBBPA, tetrabromobisphenol A) using two Fe3O4 magnetic photocatalyst (F1 and F2) is presented. The morphological, structural and surface properties of catalysts were studied. Their catalytic efficiency was evaluated based on reactions under reductive and oxidative conditions. Quantum chemical calculations were used to analyse early steps of degradation mechanism. RESULTS: The studied photocatalytic degradation reactions undergo pseudo-first order kinetics. The photocatalytic reduction process follows the Eley-Rideal mechanism rather than the commonly used Langmuir-Hinshelwood mechanism. CONCLUSIONS: The study confirms that both magnetic photocatalyst are effective and assure reductive degradation of TBBPA.

15.
Biomedicines ; 11(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37189774

RESUMO

Cardiac resynchronization therapy (CRT) restores ventricular dyssynchrony, improving left ventricle (LV) systolic function, symptoms, and outcome in patients with heart failure, systolic dysfunction, and prolonged QRS interval. The left atrium (LA) plays tremendous roles in maintaining cardiac function, being often inflicted in various cardiovascular diseases. LA remodeling implies structural-dilation, functional-altered phasic functions, and strain and electrical-atrial fibrillation remodeling. Until now, several important studies have approached the relationship between LA and CRT. LA volumes can predict responsiveness to CRT, being also associated with improved outcome in these patients. LA function and strain parameters have been shown to improve after CRT, especially in those who were positive responders to it. Further studies still need to be conducted to comprehensively characterize the impact of CRT on LA phasic function and strain, and, also, in conjunction with its impact on functional mitral regurgitation and LV diastolic dysfunction. The aim of this review was to provide an overview of current available data regarding the relation between CRT and LA remodeling.

16.
Antioxidants (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107325

RESUMO

Lonicera caerulaea L. and Aronia melanocarpa (Michx.) Elliot fruits are frequently used for their health benefits as they are rich in bioactive compounds. They are recognized as a source of natural and valuable phytonutrients, which makes them a superfood. L. caerulea presents antioxidant activity three to five times higher than other berries which are more commonly consumed, such as blackberries or strawberries. In addition, their ascorbic acid level is the highest among fruits. The species A. melanocarpa is considered one of the richest known sources of antioxidants, surpassing currants, cranberries, blueberries, elderberries, and gooseberries, and contains one of the highest amounts of sorbitol. The non-edible leaves of genus Aronia became more extensively analyzed as a byproduct or waste material due to their high polyphenol, flavonoid, and phenolic acid content, along with a small amount of anthocyanins, which are used as ingredients in nutraceuticals, herbal teas, bio-cosmetics, cosmeceuticals, food and by the pharmaceutical industry. These plants are a rich source of vitamins, tocopherols, folic acid, and carotenoids. However, they remain outside of mainstream fruit consumption, being well known only to a small audience. This review aims to shed light on L. caerulaea and A. melanocarpa and their bioactive compounds as healthy superfoods with antioxidant, anti-inflammatory, antitumor, antimicrobial, and anti-diabetic effects, and hepato-, cardio-, and neuro-protective potential. In this view, we hope to promote their cultivation and processing, increase their commercial availability, and also highlight the ability of these species to be used as potential nutraceutical sources, helpful for human health.

17.
Gels ; 9(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37102879

RESUMO

Using the microwave-assisted sol-gel method, Zn- and Cu-doped TiO2 nanoparticles with an anatase crystalline structure were prepared. Titanium (IV) butoxide was used as a TiO2 precursor, with parental alcohol as a solvent and ammonia water as a catalyst. Based on the TG/DTA results, the powders were thermally treated at 500 °C. XRD and XRF revealed the presence of a single-phase anatase and dopants in the thermally treated nanoparticles. The surface of the nanoparticles and the oxidation states of the elements were studied using XPS, which confirmed the presence of Ti, O, Zn, and Cu. The photocatalytic activity of the doped TiO2 nanopowders was tested for the degradation of methyl-orange (MO) dye. The results indicate that Cu doping increases the photoactivity of TiO2 in the visible-light range by narrowing the band-gap energy.

18.
Mar Drugs ; 21(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37103346

RESUMO

The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing.


Assuntos
Cnidários , Cifozoários , Animais , Humanos , Cnidários/metabolismo , Cicatrização , Cifozoários/química , Colágeno/química , Antioxidantes/farmacologia , Mamíferos/metabolismo
19.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982751

RESUMO

In this paper, we report the synthesis of ZnO nanoparticles (NPs) by forced solvolysis of Zn(CH3COO)2·2H2O in alcohols with a different number of -OH groups. We study the influence of alcohol type (n-butanol, ethylene glycol and glycerin) on the size, morphology, and properties of the obtained ZnO NPs. The smallest polyhedral ZnO NPs (<30 nm) were obtained in n-butanol, while in ethylene glycol the NPs measured on average 44 nm and were rounded. Polycrystalline particles of 120 nm were obtained in glycerin only after water refluxing. In addition, here, we report the photocatalytic activity, against a dye mixture, of three model pollutants: methyl orange (MO), methylene blue (MB), and rhodamine B (RhB), a model closer to real situations where water is polluted with many chemicals. All samples exhibited good photocatalytic activity against the dye mixture, with degradation efficiency reaching 99.99%. The sample with smallest nanoparticles maintained a high efficiency >90%, over five catalytic cycles. Antibacterial tests were conducted against Gram-negative strains Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive strains Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, and Bacillus cereus. The ZnO samples presented strong inhibition of planktonic growth for all tested strains, indicating that they can be used for antibacterial applications, such as water purification.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Azul de Metileno/farmacologia , Azul de Metileno/química , 1-Butanol , Glicerol , Antibacterianos/química , Água , Etilenoglicóis
20.
Materials (Basel) ; 16(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770043

RESUMO

Huge amounts of vegetable waste, mainly resulting from the food industry, need large areas for storage, as they could cause hazardous environmental impact, leading to soil and water pollution or to CO2 emissions during accidental incineration. This work was aimed at recycling certain lignocellulosic waste (walnut shells, kernels of peach, apricot, and olive) to design advanced carbon material precursors (ACMP) to be used for obtaining nano-powders with high applicative potential in pollution abatement. Both waste and ACMP were characterized using proximate and elemental analysis, and by optical microscopy. Complex characterization of raw materials by FTIR, TGA-DTG, and SEM analysis were carried out. The ACMP were synthetized at 600-700 °C by innovative microwave heating technology which offers the advantages of lower energy consumption using 3.3 kW equipment at laboratory level. The ACMP ash < 3% and increased carbon content of 87% enabled the development of an extended pore network depending on degassing conditions during heating. TEM analysis revealed a well-developed porous structure of the synthesized ACMP carbonaceous materials. Due to the presence of oxygen functional groups, ACMPs exhibit adsorption properties highlighted by an iodine index of max. 500 mg/g and surface area BET of 300 m2/g, which make them attractive for removal of environmental pollutants such as dyes having molecule sizes below 2 nm and ions with pore dimensions below 1 nm, widely used industrially and found in underground waters (NO3-) or waste waters (SO42-).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA