Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 2(11): 100436, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841289

RESUMO

Cellular morphology has the capacity to serve as a surrogate for cellular state and functionality. However, primary cardiomyocytes, the standard model in cardiovascular research, are highly heterogeneous cells and therefore impose methodological challenges to analysis. Hence, we aimed to devise a robust methodology to deconvolute cardiomyocyte morphology on a single-cell level: C-MORE (cellular morphology recognition) is a workflow from bench to data analysis tailored for heterogeneous primary cells using our R package cmoRe. We demonstrate its utility in proof-of-principle applications such as modulation of canonical hypertrophy pathways and linkage of genotype-phenotype in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). In our pilot study, exposure of cardiomyocytes to blood plasma prior to versus after aortic valve replacement allows identification of a disease fingerprint and reflects partial reversibility following therapeutic intervention. C-MORE is a valuable tool for cardiovascular research with possible fields of application in basic research and personalized medicine.


Assuntos
Algoritmos , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Biópsia Líquida , Medicina de Precisão , Análise de Célula Única , Animais , Estenose da Valva Aórtica/patologia , Ciclo Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hipertrofia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Ratos , Reprodutibilidade dos Testes
2.
J Immunol ; 205(8): 2276-2286, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938726

RESUMO

The number and activity of T cell subsets in the atherosclerotic plaques are critical for the prognosis of patients with acute coronary syndrome. ß2 Integrin activation is pivotal for T cell recruitment and correlates with future cardiac events. Despite this knowledge, differential regulation of adhesiveness in T cell subsets has not been explored yet. In this study, we show that in human T cells, SDF-1α-mediated ß2 integrin activation is driven by a, so far, not-described reactive oxidative species (ROS)-regulated calcium influx. Furthermore, we show that CD4+CD28null T cells represent a highly reactive subset showing 25-fold stronger ß2 integrin activation upon SDF-1α stimulation compared with CD28+ T cells. Interestingly, ROS-dependent Ca release was much more prevalent in the pathogenetically pivotal CD28null subset compared with the CD28+ T cells, whereas the established mediators of the classical pathways for ß2 integrin activation (PKC, PI3K, and PLC) were similarly activated in both T cell subsets. Thus, interference with the calcium flux attenuates spontaneous adhesion of CD28null T cells from acute coronary syndrome patients, and calcium ionophores abolished the observed differences in the adhesion properties between CD28+ and CD28null T cells. Likewise, the adhesion of these T cell subsets was indistinguishable in the presence of exogenous ROS/H2O2 Together, these data provide a molecular explanation of the role of ROS in pathogenesis of plaque destabilization.


Assuntos
Síndrome Coronariana Aguda/imunologia , Antígenos CD18/imunologia , Linfócitos T CD4-Positivos/imunologia , Sinalização do Cálcio/imunologia , Espécies Reativas de Oxigênio/imunologia , Síndrome Coronariana Aguda/patologia , Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/patologia , Quimiocina CXCL12/imunologia , Feminino , Humanos , Masculino
3.
Ann Transplant ; 25: e919540, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32080161

RESUMO

BACKGROUND The preservation of harvested organs plays an essential role in transplantation. Cold hypothermia is frequently applied but may lead to graft compromise resulting from reperfusion and rewarming injury. This study investigates the effect of deep hypothermia and posterior rewarming on leukocyte-endothelial interactions and junctional adhesion molecules. MATERIAL AND METHODS We established an in vitro model to investigate the transendothelial migration of leukocytes (TEM) during deep hypothermia (4°C) as well as during the post-hypothermic rewarming process. Additionally, leukocyte-endothelial interactions were analyzed by quantifying surface expression of the junctional adhesion molecules A (JAMA-A and JAM-B). RESULTS While deep hypothermia at 4°C was associated with reduced leukocyte infiltration, rewarming after hypothermic preservation resulted in a significant increase in TEM. This process is mainly triggered by activation of endothelial cells. Post-hypothermic rewarming caused a significant downregulation of JAM-A, whereas JAM-B was not altered through temperature modulation. CONCLUSIONS Hypothermia exerts a protective effect consisting of reduced leukocyte-endothelial interaction. Rewarming after hypothermic preservation, however, causes considerable upregulation of leukocyte infiltration. Downregulation of JAM-A may play a role in modulating TEM during hypothermia and rewarming. We conclude that the rewarming process is an essential but underestimated aspect during transplantation.


Assuntos
Moléculas de Adesão Celular/metabolismo , Comunicação Celular/fisiologia , Criopreservação/métodos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Leucócitos/metabolismo , Receptores de Superfície Celular/metabolismo , Movimento Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Leucócitos/citologia , Reaquecimento/métodos
4.
PLoS One ; 12(11): e0187839, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145424

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) is a major challenge in liver transplantation. The mitochondrial pathway plays a pivotal role in hepatic IRI. Levosimendan, a calcium channel sensitizer, was shown to attenuate apoptosis after IRI in animal livers. The aim of this study was to investigate the effect of levosimendan on apoptosis in human hepatocytes. METHODS: Primary human hepatocytes were either exposed to hypoxia or cultured under normoxic conditions. After the hypoxic phase, reoxygenation was implemented and cells were treated with different concentrations of levosimendan (10ng/ml, 100ng/ml, 1000ng/ml). The overall metabolic activity of the cells was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and aspartate aminotransferase (AST) levels were determined in order to quantify hepatic injury. Fluorescence-activated cell sorting (FACS) analysis was applied to measure necrosis and apoptosis. Finally, Western blotting was performed to analyze apoptotic pathway proteins. RESULTS: Administration of levosimendan during reperfusion increases the metabolic activity of human hepatocytes and decreases AST levels. Moreover, apoptosis after IRI is reduced in treated vs. untreated hepatocytes, and levosimendan prevents down-regulation of the anti-apoptotic protein Bcl-2 as well as up-regulation of the pro-apoptotic protein BAX. CONCLUSION: The present study suggests a protective effect of levosimendan on human hepatocytes. Our findings suggest that treatment with levosimendan during reperfusion attenuates apoptosis of human hepatocytes by influencing BAX and Bcl-2 levels.


Assuntos
Hepatócitos/efeitos dos fármacos , Hidrazonas/farmacologia , Piridazinas/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Apoptose/efeitos dos fármacos , Células Cultivadas , Hepatócitos/metabolismo , Humanos , Simendana , Proteína X Associada a bcl-2/metabolismo
5.
Sci Rep ; 6: 21996, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26912257

RESUMO

Patients with risks of ischemic injury, e.g. during circulatory arrest in cardiac surgery, or after resuscitation are subjected to therapeutic hypothermia. For aortic surgery, the body is traditionally cooled down to 18 °C and then rewarmed to body temperature. The role of hypothermia and the subsequent rewarming process on leukocyte-endothelial interactions and expression of junctional-adhesion-molecules is not clarified yet. Thus, we investigated in an in-vitro model the influence of temperature modulation during activation and transendothelial migration of leukocytes through human endothelial cells. Additionally, we investigated the expression of JAMs in the rewarming phase. Exposure to low temperatures alone during transmigration scarcely affects leukocyte extravasation, whereas hypothermia during treatment and transendothelial migration improves leukocyte-endothelial interactions. Rewarming causes a significant up-regulation of transmigration with falling temperatures. JAM-A is significantly modulated during rewarming. Our data suggest that transendothelial migration of leukocytes is not only modulated by cell-activation itself. Activation temperatures and the rewarming process are essential. Continued hypothermia significantly inhibits transendothelial migration, whereas the rewarming process enhances transmigration strongly. The expression of JAMs, especially JAM-A, is strongly modulated during the rewarming process. Endothelial protection prior to warm reperfusion and mild hypothermic conditions reducing the difference between hypothermia and rewarming temperatures should be considered.


Assuntos
Comunicação Celular , Células Endoteliais/fisiologia , Hipotermia , Molécula A de Adesão Juncional/metabolismo , Molécula B de Adesão Juncional/metabolismo , Leucócitos/fisiologia , Reaquecimento , Membrana Celular/metabolismo , Expressão Gênica , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Molécula A de Adesão Juncional/genética , Molécula B de Adesão Juncional/genética , Migração Transendotelial e Transepitelial
6.
PLoS One ; 8(12): e82214, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340007

RESUMO

Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB) became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1) were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes) was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial cells in a dose/time-dependent manner.


Assuntos
Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Eritrócitos/metabolismo , Azul de Metileno/farmacologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Cultivadas , GMP Cíclico/metabolismo , Células Endoteliais/citologia , Eritrócitos/citologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Migração Transendotelial e Transepitelial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA