RESUMO
BACKGROUND: Gaseous neurotransmitters have been thought to be novel factors involved in the mechanisms of mental disorders pathogenesis for quite some time. However, little is known about the potential crosstalk between neuronal gasotransmitter signaling and neuroleptics action. The present work was, therefore, focused on gene expression of H2S and CO-producing enzymes in the brains of rats chronically treated with olanzapine, an atypical antipsychotic drug. METHODS: Studies were carried out on adult, male Sprague-Dawley rats that were divided into 2 groups: control and experimental animals treated with olanzapine (28-day-long intraperitoneal injection, at a dose of 5 mg/kg daily). All individuals were sacrificed under anesthesia and the whole brains excised. Immunohistochemical procedure was used for histological assessment of the whole brain and for quantitative analysis of cystathionine ß-synthase (CBS) and heme oxygenase 2 (HO-2) protein distribution in selected brain structures. RESULTS: Long-term treatment with olanzapine is reflected in different changes in the number of enzymes-expressing cells in the rat brain. Olanzapine decreased the number of CBS-expressing cells and possibly reduced H2S synthesis in the hippocampus and striatum. The antipsychotic administration increased the number of HO-2 immunopositive cells and probably stimulated the CO production in the hippocampus. CONCLUSIONS: Modulatory effect of olanzapine on cellular mechanisms of gasotransmitter synthesis may be an alternative way of their pharmacological action.
Assuntos
Antipsicóticos , Gasotransmissores , Sulfeto de Hidrogênio , Animais , Masculino , Ratos , Antipsicóticos/farmacologia , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Gasotransmissores/metabolismo , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Hipocampo , Sulfeto de Hidrogênio/metabolismo , Olanzapina/farmacologia , Ratos Sprague-DawleyRESUMO
AIM: The aim of the present study was to investigate the histological differences between samples processed by different devices and to confirm safe clinical application of different dentin matrix obtained from three devices: BonMaker, Tooth Transformer, and Smart Dentin Grinder in regeneration of maxillary defects. RESEARCH DESIGN: The study involved 39 patients with two-wall or three-wall defects who underwent bone augmentation procedures in the maxilla using dentin matrix grafts from the BonMaker, Tooth Transformer, and Smart Dentin Grinder devices. Histological examination was conducted on samples obtained from patients who received each device. In this article, histological samples have been selected and are presented. RESULTS: In all patients, bone defects were successfully augmented with ground dentin matrix. The histological examination revealed no inflammation and a good connection between the bone and dentin matrix and clinically all patients were qualified for implant placement. CONCLUSIONS: After comparing the BonMaker, Tooth Transformer, and Smart Dentin Grinder devices in our practice, we concluded that all these systems have the potential for obtaining regenerative material from the patient's teeth.
RESUMO
Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Minociclina/farmacologia , Minociclina/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Fator de Necrose Tumoral alfa/farmacologia , Ratos Sprague-Dawley , Neurônios , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de DoençasRESUMO
The animal thromboembolic model of ischemia perfectly mimics human ischemic stroke which remains the leading cause of disability and mortality in humans. The development of new treatment strategies was therefore imperative. The purpose of this study is to improve the thromboembolic stroke model in rats in order to design experiments that use motor tests, and are in accordance with the 3R principles to prevent complications and maintain the same size of the infarct repeatedly. Tail vein dye application, a protective skull mask and a stress minimization protocol were used as additional modifications to the animal stroke model. These modifications significantly minimized the pain and stress severity of the procedures in this model. In our experimental group of Long-Evans rats, a photo-induced stroke was caused by the application of a photosensitive dye (Rose Bengal) activated with white-light irradiation, thus eliminating the need to perform a craniotomy. The animals' neurological status was evaluated using a runway elevated test. Histological examination of the brain tissue was performed at 12, 24 and 48 h, and seven days post-stroke. Tissue examination revealed necrotic foci in the cortex and the subcortical regions of the ipsilateral hemisphere in all experimental groups. Changes in the area, width and depth of the necrotic focus were observed over time. All the experimental groups showed motor disturbances after stroke survival. In the proposed model, photochemically-induced stroke caused long-term motor deficits, showed high reproducibility and low mortality rates. Consequently, the animals could participate in motor tests which are particularly suitable for assessing the efficacy of neuro-regenerative therapies, while remaining in line with the latest trends in animal experimental design.
RESUMO
BACKGROUND: Newly identified multifunctional peptidergic modulators of stress responses: neuromedin U (NMU) and neuropeptide S (NPS) are involved in the wide spectrum of brain functions. However, there are no reports dealing with potential molecular relationships between the action of diverse anxiolytic or antidepressant drugs and NMU and NPS signaling in the brain. The present work was therefore focused on local expression of the aforementioned stress-related neuropeptides in the rat brain after long-term treatment with escitalopram and clonazepam. METHODS: Studies were carried out on adult, male Sprague-Dawley rats that were divided into 3 groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 5 mg/kg daily), and clonazepam (at single dose 0.5 mg/kg). All individuals were sacrificed under anaesthesia and the whole brain excised. Total mRNA was isolated from homogenized samples of amygdala, hippocampus, hypothalamus, thalamus, cerebellum and brainstem. Real time-PCR method was used for estimation of related NPS, NPS receptor (NPSR), NMU, NMU and receptor 2 (NMUR2) mRNA expression. The whole brains were also sliced for general immunohistochemical assessment of the neuropeptides expression. RESULTS: Chronic administration of clonazepam resulted in an increase of NMU mRNA expression and formation of NMU-expressing fibers in the amygdala, while escitalopram produced a significant decrease in NPSR mRNA level in hypothalamus. Long-term escitalopram administration affects the local expression of examined neuropeptides mRNA in a varied manner depending on the brain structure. CONCLUSIONS: Pharmacological effects of escitalopram may be connected with local at least partially NPSR-related alterations in the NPS/NMU/NMUR2 gene expression at the level selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Assuntos
Ansiedade , Encéfalo , Clonazepam , Escitalopram , Moduladores GABAérgicos , Neuropeptídeos , Receptores de Neuropeptídeos , Receptores de Neurotransmissores , Animais , Ansiedade/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Clonazepam/farmacologia , Clonazepam/uso terapêutico , Escitalopram/farmacologia , Escitalopram/uso terapêutico , Moduladores GABAérgicos/farmacologia , Moduladores GABAérgicos/uso terapêutico , Masculino , Neuropeptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeos/metabolismo , Receptores de Neurotransmissores/metabolismoRESUMO
BACKGROUND: Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular interactions between the activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of adult neurogenesis and the expression of noncanonical stress-related neuropeptides such as neuromedin U (NMU). The present work therefore focused on immunoexpression of neuromedin U receptor 2 (NMUR2) and doublecortin (DCX) in the rat hippocampus after acute treatment with escitalopram and in combination with selective neuropeptide S receptor (NPSR) blockade. METHODS: Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 10 mg/kg daily), escitalopram + SHA-68, a selective NPSR antagonist (at single dose 40 mg/kg), SHA-68 alone, and corresponding vehicle control. All animals were sacrificed under halothane anaesthesia. The whole hippocampi were quickly excised, fixed, and finally sliced for general qualitative immunohistochemical assessment of the NPSR and NMUR2 expression. The number of immature neurons was enumerated using immunofluorescent detection of doublecortin (DCX) expression within the subgranular zone (SGZ). RESULTS: Acute escitalopram administration affects the number of DCX and NMUR2-expressing cells in the adult rat hippocampus. A decreased number of DCX-expressing neuroblasts after treatment with escitalopram was augmented by SHA-68 coadministration. CONCLUSIONS: Early pharmacological effects of escitalopram may be at least partly connected with local NPSR-related alterations of neuroblast maturation in the rat hippocampus. Escitalopram may affect neuropeptide and DCX-expression starting even from the first dose. Adult neurogenesis may be regulated via paracrine neuropeptide S and NMU-related signaling.
RESUMO
BACKGROUND: Neurosteroids are involved in several important brain functions and have recently been considered novel players in the mechanic actions of neuropsychiatric drugs. There are no reports of murine studies focusing on the effect of chronic neurosteroid treatment in parallel with antipsychotics on key steroidogenic enzyme expression and we therefore focused on steroidogenic enzyme gene expression in the brainstem of rats chronically treated with olanzapine and haloperidol. METHODS AND RESULTS: Studies were carried out on adult, male Sprague-Dawley rats which were divided into 3 groups: control and experimental animals treated with olanzapine or haloperidol. Total mRNA was isolated from homogenized brainstem samples for RealTime-PCR to estimate gene expression of related aromatase, 3ß-HSD and P450scc. Long-term treatment with the selected antipsychotics was reflected in the modulation of steroidogenic enzyme gene expression in the examined brainstem region; with both olanzapine and haloperidol increasing aromatase, 3ß-HSD and P450scc gene expression. CONCLUSIONS: The present findings shed new light on the pharmacology of antipsychotics and suggest the existence of possible regulatory interplay between neuroleptic action and steroidogenesis at the level of brainstem neuronal centres.
Assuntos
Antipsicóticos/efeitos adversos , Antipsicóticos/farmacologia , Tronco Encefálico/metabolismo , Neuroesteroides/metabolismo , Animais , Tronco Encefálico/química , Tronco Encefálico/efeitos dos fármacos , Células Cultivadas , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Expressão Gênica/efeitos dos fármacos , Masculino , Neurônios/metabolismo , Olanzapina/farmacologia , RNA Mensageiro/genética , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Phoenixin, spexin and nesfatin-1 belong to a family of newly discovered multifunctional neuropeptides that play regulatory roles in several brain structures and modulate the activity of important neural networks. However, little is known about their expression and action at the level of brainstem. The present work was, therefore, focused on gene expression of the aforementioned peptides in the brainstem of rats chronically treated with olanzapine, a second generation antipsychotic drug. METHODS: Studies were carried out on adult, male Sprague-Dawley rats that were divided into 2 groups: control and experimental animals treated with olanzapine (28-day-long intraperitoneal injection, at dose 5 mg/kg daily). All individuals were killed under anesthesia and the brainstem excised. Total mRNA was isolated from homogenized samples of both structures and the RT-PCR method was used for estimation of related SMIM20/phoenixin, NPQ/spexin and NUCB2/nesfatin-1 gene expression. RESULTS: Long-term treatment with olanzapine is reflected in qualitatively different changes in expression of examined neuropeptides mRNA in the rat brainstem. Olanzapine significantly decreased NPQ/spexin mRNA expression, but increased SMIM20/phoenixin mRNA level in the rat brainstem; while NUCB2/nesfatin-1 mRNA expression remained unchanged. CONCLUSIONS: Olanzapine can affect novel peptidergic signaling in the rat brainstem. This may cautiously suggest the presence of an alternative mode of its action.
Assuntos
Tronco Encefálico/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Nucleobindinas/metabolismo , Olanzapina/farmacologia , Hormônios Peptídicos/metabolismo , Animais , Antipsicóticos/farmacologia , Tronco Encefálico/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Draxin belongs to the family of inhibitory axon-guiding factors that regulate neuronal migration and axonal spreading in the developing brain. This glycoprotein has recently been considered to play an important role both in hippocampal differentiation and adult neurogenesis in the dentate gyrus. Given that it has been reported that antipsychotic drugs may affect neurite growth and neurogenesis, we have therefore investigated whether chronic treatment with olanzapine modulates draxin immunoreactivity in the adult rat hippocampus. After analysis of local fluorescence intensity, we found a significant increase of draxin immunoexpression both in the subgranular zone (SGZ) and granular zone of the rat hippocampus following long-term olanzapine administration. This study reveals, for the first time, the modulatory effect of the atypical antipsychotic medication olanzapine on expression of the novel chemorepulsive protein draxin in the context of adult neurogenesis regulation. Moreover, this is the first report dealing with pharmacological aspects of draxin signaling. An elevated draxin expression may indirectly support a recently formulated hypothesis that olanzapine may drive adult neurogenesis via paracrine draxin-related signaling. This action of draxin is a new element in the neurogenesis mechanism that may be part of the action of second-generation antipsychotics in the treatment of schizophrenia, indicating more detailed molecular studies are urgently required to fully investigate these potential novel mechanisms of neurogenesis.
RESUMO
Obesity cardiomyopathy increases the risk of heart failure and death. Obesity is curable, leading to the restoration of the heart phenotype, but it is not clear if there are any after-effects of obesity present after weight loss. We characterize the proteomic landscape of obesity cardiomyopathy with an evaluation of whether the cardiac phenotype is still shaped after weight loss. Cardiomyopathy was validated by cardiac hypertrophy, fibrosis, oversized myocytes, and mTOR upregulation in a rat model of cafeteria diet-induced developmental obesity. By global proteomic techniques (LC-MS/MS) a plethora of molecular changes was observed in the heart and circulation of obese animals, suggesting abnormal utilization of metabolic substrates. This was confirmed by increased levels of cardiac ACSL-1, a key enzyme for fatty acid degradation and decreased GLUT-1, a glucose transporter in obese rats. Calorie restriction and weight loss led to the normalization of the heart's size, but fibrosis was still excessive. The proteomic compositions of cardiac tissue and plasma were different after weight loss as compared to control. In addition to morphological consequences, obesity cardiomyopathy involves many proteomic changes. Weight loss provides for a partial repair of the heart's architecture, but the trace of fibrotic deposition and proteomic alterations may occur.
Assuntos
Cardiomiopatias , Obesidade , Redução de Peso/fisiologia , Animais , Restrição Calórica , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Modelos Animais de Doenças , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Obesidade/complicações , Obesidade/dietoterapia , Obesidade/metabolismo , Obesidade/patologia , Proteoma/análise , Proteoma/metabolismo , Proteômica , Ratos , Ratos Long-EvansRESUMO
OBJECTIVES: It is hypothesized that novel neuropeptides such as phoenixin (PNX), spexin (SPX), and kisspeptin (KISS) are involved in the pathogenesis of eating disorders. The study presented here analyzed neuropeptide concentrations during the course of anorexia nervosa (AN) and aimed to correlate those values with anthropometric and psychometric measurements. METHODS: A longitudinal study was carried outin 30 AN adolescent patients and 15 age-matched healthy female controls. Selected neuroprotein serum levels were analyzed in malnourished patients (accAN) and following partial weight recovery (norAN), and these values were compared with the control group. RESULTS: In accAN patients, decreased serum PNX levels were detected while SPX serum concentrations were lower in the accAN and norAN patients. No differences were observed in KISS concentrations in all studied groups. CONCLUSIONS: In malnourished adolescent inpatients with AN, serum PNX and SPX level were decreased. The partial weight recovery normalized PNX concentrations but failed to normalize SPX levels. Therefore these two neuropeptides might be crucial for the etiology and course of the AN. The KISS levels did not change in the course of AN. The PNX levels were associated with some symptoms of eating disorders which may indicate its potential contribution in the regulation of emotions and behaviors in AN.
Assuntos
Anorexia Nervosa , Kisspeptinas/sangue , Neuropeptídeos , Hormônios Peptídicos/sangue , Adolescente , Anorexia Nervosa/psicologia , Feminino , Humanos , Pacientes Internados , Estudos Longitudinais , Neuropeptídeos/sangueRESUMO
Neuropeptides are involved in numerous brain activities being responsible for a wide spectrum of higher mental functions. The purpose of this concise, structural and qualitative investigation was to map the possible immunoreactivity of the novel neuropeptide spexin (SPX) within the human magnocellular hypothalamus. SPX is a newly identified peptide, a natural ligand for the galanin receptors (GALR) 2/3, with no molecular structure similarities to currently known regulatory factors. SPX seems to have multiple physiological functions, with an involvement in reproduction and food-intake regulation recently revealed in animal studies. For the first time we describe SPX expressing neurons in the supraoptic (SON) and paraventricular (PVN) nuclei of the human hypothalamus using immunohistochemical and fluorescent methods, key regions involved in the mechanisms of osmotic homeostasis, energy expenditure, consummatory behaviour, reproductive processes, social recognition and stress responses. The vast majority of neurons located in both examined neurosecretory nuclei show abundant SPX expression and this may indirectly implicate a potential contribution of SPX signalling to the hypothalamic physiology in the human brain.
Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Hormônios Peptídicos/metabolismo , Receptores de Galanina/metabolismo , Humanos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Supraóptico/metabolismoRESUMO
Neuropeptides are important, multifunctional regulatory factors of the nervous system, being considered as a novel, atypical sites of antidepressants action. It has already been proven that some of them, such as selective serotonin reuptake inhibitors (SSRI), are able to affect peptidergic pathways in various brain regions. Despite these reports, there is so far no reports regarding the effect of treatment with SSRIs on brain proopiomelanocortin (POMC), kisspeptin, Kiss1R and MCHR1 gene expression. In the current study we examined POMC, kisspeptin, Kiss1R and MCHR1 mRNA expression in the selected brain structures (hypothalamus, hippocampus, amygdala, striatum, cerebellum and brainstem) of rats chronically treated with a 10 mg/kg dose of escitalopram using quantitative Real-Time PCR. Long-term treatment with escitalopram led to the upregulation of MCHR1 expression in the rat amygdala. Kisspeptin mRNA level was also increased in the amygdala, but Kiss1R mRNA expressions were elevated in the hippocampus, hypothalamus and cerebellum. POMC mRNA expressions were in turn decreased in the hippocampus, amygdala, cerebellum and brainstem. These results may support the hypothesis that these neuropeptides may be involved in the site-dependent actions of SSRI antidepressants. This is the first report of the effects of escitalopram on POMC, kisspeptin, Kiss1R and MCHR1 in animal brain. Our findings shed a new light on the pharmacology of SSRIs and may contribute to a better understanding of the alternative, neuropeptide-dependent modes of antidepressant action.
Assuntos
Encéfalo/metabolismo , Citalopram/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Kisspeptinas/biossíntese , Pró-Opiomelanocortina/biossíntese , Receptores de Kisspeptina-1/biossíntese , Receptores de Somatostatina/biossíntese , Animais , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Physical activity impacts brain functions, but the direct mechanisms of this effect are not fully recognized or understood. Among multidimensional changes induced by physical activity, brain fatty acids (FA) appear to play an important role; however, the knowledge in this area is particularly scarce. Here we performed global metabolomics profiling of the hippocampus and the frontal cortex (FC) in a model of voluntary running in mice. Examined brain structures responded differentially to physical activity. Specifically, the markers of the tricarboxylic acid (TCA) cycle were downregulated in the FC, whereas glycolysis was enhanced in the hippocampus. Physical activity stimulated production of myristic, palmitic and stearic FA; i.e., the primary end products of de novo lipogenesis in the brain, which was accompanied by increased expression of hippocampal fatty acid synthase (FASN), suggesting stimulation of lipid synthesis. The changes in the brain fatty acid profile were associated with reduced anxiety level in the running mice. Overall, the study examines exercise-related metabolic changes in the brain and links them to behavioral outcomes.
Assuntos
Ansiedade/metabolismo , Encéfalo/metabolismo , Ácidos Graxos/biossíntese , Condicionamento Físico Animal , Animais , Comportamento Animal , Metabolismo Energético , Hipocampo/fisiologia , Masculino , Metaboloma , Metabolômica , Camundongos Endogâmicos C57BL , Modelos AnimaisRESUMO
Antipsychotic drugs, known as the antagonists of dopaminergic receptors, may also affect a large spectrum of other molecular signaling pathways in the brain. Despite the numerous ongoing studies on neurosteroid action and regulation, there are no reports regarding the influence of extended treatment with typical and atypical neuroleptics on brain aromatase (CYP19A1) expression. In the present study, we assessed for the first time aromatase mRNA and protein levels in the brain of rats chronically (28 days) treated with olanzapine, clozapine, and haloperidol using quantitative real-time PCR, end-point RT-PCR, and Western blotting. Both clozapine and haloperidol, but not olanzapine treatment, led to an increase of aromatase mRNA expression in the rat brain. On the other hand, aromatase protein level remained unchanged after drug administration. These results cast a new light on the pharmacology of examined antipsychotics and contribute to a better understanding of the mechanisms responsible for their action. The present report also underlines the complex nature of potential interactions between neuroleptic pharmacological effects and physiology of brain neurosteroid pathways.
Assuntos
Antipsicóticos/farmacologia , Aromatase/genética , Encéfalo/efeitos dos fármacos , Clozapina/farmacologia , Haloperidol/farmacologia , Olanzapina/farmacologia , Animais , Antipsicóticos/administração & dosagem , Aromatase/metabolismo , Encéfalo/metabolismo , Clozapina/administração & dosagem , Haloperidol/administração & dosagem , Masculino , Olanzapina/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Neuropeptides are involved in various brain activities being able to control a wide spectrum of higher mental functions. The purpose of this concise structural investigation was to detect the possible immunoreactivity of the novel multifunctional neuropeptide nesfatin-1 within the human bed nucleus of the stria terminalis (BNST). The BNST is involved in the mechanism of fear learning, integration of stress and reward circuits, and pathogenesis of addiction. Nesfatin-1-expressing neurons were identified for the first time in several regions of the BNST using both immunohistochemical and fluorescent methods. This may implicate a potential contribution of this neuropeptide to the BNST-related mechanisms of stress/reward responses in the human brain.
Assuntos
Neurônios/citologia , Neurônios/metabolismo , Nucleobindinas/biossíntese , Núcleos Septais/citologia , Núcleos Septais/metabolismo , HumanosRESUMO
The recently discovered peptide phoenixin (PNX) and its receptor GPR173 are novel factors that exhibit a large spectrum of regulatory activity, especially when considered as a central modulator of GnRH-related hormonal control of reproductive processes. It has been already proven that GnRH agonists and antagonists can modulate peptidergic signalling in the HPG axis. Despite these findings, there is so far no information regarding the influence of treatment with GnRH analogues on SMIM20/phoenixin signalling in the hypothalamic-pituitary-gonadal axis. In the current study, SMIM20/phoenixin and GPR173 mRNA levels were measured in the hypothalamus, pituitary and ovaries of female rats in the dioestrus phase following treatment with GnRH-R agonist (buserelin) and antagonist (cetrorelix) using quantitative real-time PCR. The serum PNX concentrations were also estimated with ELISA technique. The hypothalamic, hypophyseal and especially ovarian levels of SMIM20 mRNA were increased after both buserelin and cetrorelix administration. The GPR173 expressions were in turn decreased in the hypothalamus and pituitary. Treatment with the GnRH analogues led to the modulation of SMIM20/phoenixin and GPR173 mRNA expression in the female rat hypothalamic-pituitary-gonadal axis. By identifying buserelin and cetrorelix as novel modulators of phoenixin signalling in the animal HPG axis, these results cast new light on the GnRH analogues mode of action and contribute to a better understanding of the mechanisms responsible for the hormonal control of reproduction.
RESUMO
BACKGROUND & OBJECTIVE: Continuously active neurogenic regions in the adult brain are located in the subventricular zone (SVZ) of the lateral ventricles and subgranular zone of the hippocampal dentate gyrus. Neurogenesis is modulated by many factors such as growth factors, neurotransmitters and hormones. Neuropsychiatric drugs, especially antidepressants, mood stabilizers and antipsychotics may also affect the origin of neuronal cells. METHOD: The purpose of this study was to determine the effects of chronic olanzapine treatment on adult rat neurogenesis at the level of the SVZ. The number of neuroblasts was evaluated using immunohistochemical and fluorescent detection of sex determining region Y-box 2 and doublecortin expressing cells. RESULTS & CONCLUSION: The results indicate that olanzapine has proneurogenic effects on the adult rat SVZ, as the mean number of sex determining region Y-box 2 and doublecortin-positive cells increased significantly, while there was a similar tendency in the subgranular zone. Collectively, these results suggest that long-term treatment with olanzapine may stimulate neurogenic stem cell formation in the SVZ which supports adult neurogenesis.
Assuntos
Antipsicóticos/farmacologia , Ventrículos Laterais/citologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Olanzapina/farmacologia , Fatores de Transcrição SOXB1/metabolismo , Animais , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Ventrículos Laterais/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Spexin (SPX) is a recently discovered neuropeptide that exhibits a large spectrum of central and peripheral regulatory activity, especially when considered as a potent anorexigenic factor. It has already been proven that antidepressants, including selective serotonin reuptake inhibitors (SSRI), can modulate peptidergic signaling in various brain structures. Despite these findings, there is so far no information regarding the influence of treatment with the SSRI antidepressant escitalopram on brain SPX expression. METHODS: In this current study we measured SPX mRNA and protein expression in the selected brain structures (hypothalamus, hippocampus and striatum) of rats chronically treated with a 10mg/kg dose of escitalopram using quantitative Real-Time PCR and immunohistochemistry. RESULTS: Strikingly, long-term (4 week) drug treatment led to the downregulation of SPX expression in the rat hypothalamus. This supports the hypothesis that SPX may be involved in the hypothalamic serotonin-dependent actions of SSRI antidepressants and possibly also in the central mechanism of body mass increase. Conversely, SPX expression increased in the hippocampus and striatum. CONCLUSIONS: This is the first report of the effects of a neuropsychiatric medication on SPX expression in animal brain. Our findings shed a new light on the pharmacology of antidepressants and may contribute to a better understanding of the alternative mechanisms responsible for antidepressant action.
Assuntos
Citalopram/farmacologia , Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hormônios Peptídicos/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Corpo Estriado/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Hormônios Peptídicos/antagonistas & inibidores , Hormônios Peptídicos/genética , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: This study aimed to evaluate the effect of extended olanzapine, clozapine and haloperidol administration on NMDA-R subunit immunoexpression in the rat neocortex and diencephalon. METHODS: To explore NR1, NR2A and NR2B subunit protein expression, densytometric analysis of immunohistochemically stained brain slices was performed. RESULTS: Interestingly, all neuroleptics caused a downregulation of NMDA-R subunit expression in the thalamus but increased the level of NR1 in the hypothalamus. Olanzapine upregulated hypothalamic NR2A expression, while clozapine and haloperidol decreased hypothalamic levels. We observed no significant changes in NR2B immunoreactivity. None of the studied medications had significant influence on NMDA-R subunit expression in the neocortex. CONCLUSIONS: Neuroleptic-induced reduction in the expression of thalamic NMDA-R subunits may play an important role in the regulation of glutamatergic transmission disorders in cortico-striato-thalamo-cortical loop in schizophrenia. A decrease in NMDA signaling in this region after long-term neuroleptic administration may also cautiously explain the incomplete effectiveness of these drugs in the therapy of schizophrenia-related cognitive disturbances.