Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276439

RESUMO

Magnesium alloys play an essential role in metallic lightweight construction for modern mobility applications due to their low density, excellent specific strength, and very good castability. For some years now, degradable implants have also been made from magnesium alloys, which, thanks to this special functionality, save patients a second surgery for explantation. New additive manufacturing processes, which are divided into powder-based and wire-based processes depending on the feedstock used, can be utilized for these applications. Therefore, magnesium alloys should also be used here, but this is hardly ever implemented, and few literature reports exist on this subject. This is attributable to the high affinity of magnesium to oxygen, which makes the use of powders difficult. Therefore, magnesium wires are likely to be used. In this paper, a magnesium-based nanocomposite wire is made from an AM60 (Mg-6Al-0.4Mn) (reinforced with 1 wt% AlN nanoparticles and containing calcium to reduce flammability), using a high-shear process and then extruded into wires. These wires are then used as feedstock to build up samples by wire-arc directed energy deposition, and their mechanical properties and microstructure are examined. Our results show that although the ductility is reduced by adding calcium and nanoparticles, the yield strength in the welding direction and perpendicular to it is increased to 131 MPa.

2.
Materials (Basel) ; 16(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374416

RESUMO

The processability during massive deformation of magnesium-wrought products is hampered by the low formability of magnesium alloys. The research results of recent years demonstrate that rare earth elements as alloying elements improve the properties of magnesium sheets, such as formability, strength and corrosion resistance. The substitution of rare earth elements by Ca in Mg-Zn-based alloys results in a similar texture evolution and mechanical behaviour as RE-containing alloys. This work is an approach to understanding the influence of Mn as an alloying element to increase the strength of a Mg-Zn-Ca alloy. For this aim, a Mg-Zn-Mn-Ca alloy is used to investigate how Mn affects the process parameters during rolling and the subsequent heat treatment. The microstructure, texture and mechanical properties of rolled sheets and heat treatment at different temperatures are compared. The outcome of casting and the thermo-mechanical treatment are used to discuss how to adapt the mechanical properties of magnesium alloy ZMX210. The alloy ZMX210 behaves very similarly to the ternary Mg-Zn-Ca alloys. The influence of the process parameter rolling temperature on the properties of the ZMX210 sheets was investigated. The rolling experiments show that the ZMX210 alloy has a relatively narrow process window.

3.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363162

RESUMO

In the field of magnesium-based degradable implantable devices, the Mg-Y-RE-Zr alloying system (WE-type) has gained popularity due to its satisfying degradation rate together with mechanical strength. However, utilization of RE and Zr in the WE-type alloys was originally driven to improve Mg-based alloys for high-temperature applications in the industry, while for medical purposes, there is a question of whether the amount of alloying elements may be further optimized. For this reason, our paper presents the Mg-3Y (W3) magnesium alloy as an alternative to the WE43 alloy. This study shows that the omission of RE and Zr elements did not compromise the corrosion resistance and the degradation rate of the W3 alloy when compared with the WE43 alloy; appropriate biocompatibility was preserved as well. It was shown that the decrease in the mechanical strength caused by the omission of RE and Zr from the WE43 alloy could be compensated for by severe plastic deformation, as achieved in this study, by equal channel angular pressing. Ultrafine-grained W3 alloy exhibited compression yield strength of 362 ± 6 MPa and plastic deformation at maximum stress of 18 ± 1%. Overall, the early results of this study put forward the motion of avoiding RE elements and Zr in magnesium alloy as a suitable material for biodegradable applications and showed that solo alloying of yttrium is sufficient for maintaining desirable properties of the material at once.

4.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35957113

RESUMO

Metal matrix nanocomposites are attracting attention because of their great potential for improved mechanical properties and possible functionalization. These hybrid materials are often produced by casting processes, but they can also develop their property profile after hot working, e.g., by forging or extrusion. In this study, a commercial cast magnesium alloy AM60 was enriched with 1 wt.% AlN nanoparticles and extruded into round bars with varied extrusion rates. The same process was carried out with unreinforced AM60 in order to determine the influences of the AlN nanoparticles in direct comparison. The influence of extrusion speed on the recrystallization behavior as well the effect of nanoparticles on the microstructure evolution and the particle-related strengthening are discussed and assessed with respect to the resulting mechanical performance.

5.
Materials (Basel) ; 15(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955176

RESUMO

This paper reports on the dilemma of the strength and forming behavior of magnesium alloy sheets due to hot rolling and precipitation aging as an obstacle for property adjustment. The effect of the Zn content on the age-hardenability and formability of Mg-Zn-Al-Ca-Mn sheets was investigated. Sheets of two alloys with 2 or 4 wt.% Zn, respectively, were produced by casting and subsequent hot rolling and their microstructure development, precipitation behavior and formability were examined. With higher Zn content the age-hardenability was increased, but at the same time the formability of the sheet decreased, concurrent to the basal-type texture development during rolling. On the other hand, the sheet containing a lower amount of Zn exhibited a weak rolling texture and rather high formability but low age-hardenability. The addition of a larger amount of Zn improved the age-hardenability through the formation of ß1' and ß2' phases. The basal texture was exhibited due to the consumption of solute Ca due to the formation of the Ca2Mg6Zn3 phase. This study suggests that this contradictory exhibition of the age-hardenability and formability of Ca-containing and Zn-based alloy sheets requires a strategical approach in alloy and process design, which allows tailoring the alloying elements and processing for the respective purpose.

6.
Materials (Basel) ; 13(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302586

RESUMO

The deformation behavior of extruded Mg alloys with a Ca or Nd addition (up to 0.5 wt.%) is addressed with respect to a specified thermo-mechanical treatment, realized by pre-compression and subsequent heat treatment at intermediate temperature. The twinning-detwinning process is discussed with respect to the initial texture and applied heat treatment. Isothermal aging leads to precipitation and segregation along twin boundaries and dislocations in the pre-compressed Mg alloys, and, thus, variation in the mobility of twin boundaries (TB) is observed in the investigated alloys. Despite individual scenarios of TB mobility in particular grains, in general, the same TB mobility modes are observed in the alloys independently on Ca or Nd alloying. The microstructure development, particularly the twin volume fraction and the mobility of tensile {10-12} twin boundaries, is tracked using scanning electron microscopy, including backscattered electron (BSE) imaging and electron backscatter diffraction (EBSD) mapping.

7.
Materials (Basel) ; 13(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952142

RESUMO

Magnesium alloys attract attention as degradable implant materials due to their adjustable corrosion properties and biocompatibility. In the last few decades, especially wrought magnesium alloys with enhanced mechanical properties have been developed, with the main aim of increasing ductility and formability. Alloying and processing studies allowed demonstrating the relationship between the processing and the microstructure development for many new magnesium alloys. Based on this experience, magnesium alloy compositions need adjustment to elements improving mechanical properties while being suitable for biomaterial applications. In this work, magnesium alloys from two Mg-Zn series with Ce (ZE) or Ca (ZX) as additional elements and a series of alloys with Ag and Ca (QX) as alloying elements are suggested. The microstructure development was studied after the extrusion of round bars with varied processing parameters and was related to the mechanical properties and the degradation behavior of the alloys. Grain refinement and texture weakening mechanisms could be improved based on the alloy composition for enhancing the mechanical properties. Degradation rates largely depended on the nature of second phase particles rather than on the grain size, but remained suitable for biological applications. Furthermore, all alloy compositions exhibited promising cytocompatibility.

8.
Materials (Basel) ; 13(2)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940918

RESUMO

The impact of precompression, thermal treatment and its combination on the deformation behaviour of an extruded Mg-Zn-Ca (ZX10) alloy was studied with respect to a varied average grain size. The Hall-Petch plot was used to highlight the impact in a wide grain size interval. The initial texture of the wrought alloy was characterized by X-ray diffraction. Moreover, the evolution of microstructure and texture was provided by the electron backscatter diffraction (EBSD) technique. The obtained results indicate the strong contribution of deformation-thermal treatment on the resulting deformation behaviour. Particularly, after precompression and heat treatment, higher strengthening effect was observed in the reversed tensile loaded compared to compressed samples without any change in the Hall-Petch slope throughout the grain size interval. Unlike this strengthening effect, a reversed tension-compression yield asymmetry with higher strength values in compression has been obtained.

9.
Materials (Basel) ; 11(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303975

RESUMO

Deformation behaviour of rolled AZ31 sheets that were subjected to the accumulative roll bonding was investigated. Substantially refined microstructure of samples was achieved after the first and second pass through the rolling mill. Sheets texture was investigated using an X-ray diffractometer. Samples for tensile tests were cut either parallel or perpendicular to the rolling direction. Tensile tests were performed at temperatures ranging from room temperature up to 300 °C. Tensile plastic anisotropy, different from the anisotropy observed in AZ31 sheets by other authors, was observed. This anisotropy decreases with an increasing number of rolling passes and increasing deformation temperature. Grain refinement and texture are the crucial factors influencing the deformation behaviour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA