Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(20): 10660-10666, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371488

RESUMO

Cells can rapidly adapt to changing environments through nongenetic processes; however, the metabolic cost of such adaptation has never been considered. Here we demonstrate metabolic coupling in a remarkable, rapid adaptation process (1 in 1,000 cells adapt per hour) by simultaneously measuring metabolism and division of thousands of individual Saccharomyces cerevisiae cells using a droplet microfluidic system: droplets containing single cells are immobilized in a two-dimensional (2D) array, with osmotically induced changes in droplet volume being used to measure cell metabolism, while simultaneously imaging the cells to measure division. Following a severe challenge, most cells, while not dividing, continue to metabolize, displaying a remarkably wide diversity of metabolic trajectories from which adaptation events can be anticipated. Adaptation requires a characteristic amount of energy, indicating that it is an active process. The demonstration that metabolic trajectories predict a priori adaptation events provides evidence of tight energetic coupling between metabolism and regulatory reorganization in adaptation. This process allows S. cerevisiae to adapt on a physiological timescale, but related phenomena may also be important in other processes, such as cellular differentiation, cellular reprogramming, and the emergence of drug resistance in cancer.


Assuntos
Adaptação Fisiológica , Redes e Vias Metabólicas , Saccharomyces cerevisiae/metabolismo , Divisão Celular , Microfluídica/instrumentação , Microfluídica/métodos , Saccharomyces cerevisiae/citologia , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos
2.
Biomicrofluidics ; 12(4): 049902, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30123402

RESUMO

[This corrects the article DOI: 10.1063/1.5037795.].

3.
Biomicrofluidics ; 12(4): 044106, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30034569

RESUMO

Droplet-based microfluidics, using water-in-oil emulsion droplets as micro-reactors, is becoming a widespread method for performing assays and especially in the cell biology field. Making a simple and highly portable system for creating emulsion droplets would help to continue the popularization of such a technique. Also, the ability to emulsify all the samples would strengthen this compartimenlization technique to handle samples with limited volume. Here, we propose a strategy of droplet formation that combines a classical flow-focusing microfluidic chip, which could be commercially available, with a standard laboratory adjustable micropipette. The micropipette is used as a negative pressure generator for controlling liquid flows. In that way, emulsification does neither require any electrical power supply nor a cumbersome device and functions with small liquid volumes. Droplet formation can be easily and safely performed in places with limited space, opening a wide range of applications especially in biological laboratory environments with higher level of safety regulations, i.e., BSL-3/4. Fortunately, the present methodology that involves small fluid volumes, and thus possible time dependent flow conditions, allows to minimize dead volume while keeping drops' size homogeneous. A physical characterization of droplet production and a model that describes the emulsion features, in terms of drop size and size distribution, are proposed for rationalizing the performances of the micropipette-powered emulsification process.

4.
J Microbiol Methods ; 147: 59-65, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29518436

RESUMO

Application of droplet-based microfluidics for the screening of microbial libraries is one of the important ongoing developments in functional genomics/metagenomics. In this article, we propose a new method that can be employed for high-throughput profiling of cell growth. It consists of light-driven labelling droplets that contain growing cells directly in a microfluidics observation chamber, followed by recovery of the labelled cells. This method is based on intracellular expression of green-to-red switchable fluorescent proteins. The proof of concept is established here for two commonly used biological models, E. coli and S. cerevisiae. Growth of cells in droplets was monitored under a microscope and, depending on the targeted phenotype, the fluorescence of selected droplets was switched from a "green" to a "red" state. Red fluorescent cells from labelled droplets were then successfully detected, sorted with the Fluorescence Activated Cell Sorting machine and recovered. Finally, the application of this method for different kind of screenings, in particular of metagenomic libraries, is discussed and this idea is validated by the analysis of a model mini-library.


Assuntos
Citometria de Fluxo/métodos , Proteínas Luminescentes , Microfluídica/métodos , Escherichia coli/crescimento & desenvolvimento , Biblioteca Gênica , Proteínas de Fluorescência Verde , Metagenômica/métodos , Técnicas Analíticas Microfluídicas/métodos , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Coloração e Rotulagem/métodos , Proteína Vermelha Fluorescente
5.
PLoS One ; 10(3): e0118987, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25760649

RESUMO

To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.


Assuntos
Divisão Celular , Chlamydomonas reinhardtii/citologia , Técnicas de Cultura de Células/instrumentação , Proliferação de Células , Células Cultivadas , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA