Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Muscle Res Cell Motil ; 31(3): 227-39, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20803058

RESUMO

Tropomyosin (TM) plays a central role in calcium mediated striated muscle contraction. There are three muscle TM isoforms: alpha-TM, beta-TM, and gamma-TM. alpha-TM is the predominant cardiac and skeletal muscle isoform. beta-TM is expressed in skeletal and embryonic cardiac muscle. gamma-TM is expressed in slow-twitch musculature, but is not found in the heart. Our previous work established that muscle TM isoforms confer different physiological properties to the cardiac sarcomere. To determine whether one of these isoforms is dominant in dictating its functional properties, we generated single and double transgenic mice expressing beta-TM and/or gamma-TM in the heart, in addition to the endogenously expressed alpha-TM. Results show significant TM protein expression in the betagamma-DTG hearts: alpha-TM: 36%, beta-TM: 32%, and gamma-TM: 32%. These betagamma-DTG mice do not develop pathological abnormalities; however, they exhibit a hyper contractile phenotype with decreased myofilament calcium sensitivity, similar to gamma-TM transgenic hearts. Biophysical studies indicate that gamma-TM is more rigid than either alpha-TM or beta-TM. This is the first report showing that with approximately equivalent levels of expression within the same tissue, there is a functional dominance of gamma-TM over alpha-TM or beta-TM in regulating physiological performance of the striated muscle sarcomere. In addition to the effect expression of gamma-TM has on Ca(2+) activation of the cardiac myofilaments, our data demonstrates an effect on cooperative activation of the thin filament by strongly bound rigor cross-bridges. This is significant in relation to current ideas on the control mechanism of the steep relation between Ca(2+) and tension.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Músculo Estriado/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Tropomiosina/biossíntese , Animais , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Sarcômeros/genética , Sarcômeros/metabolismo , Tropomiosina/genética
2.
Circulation ; 121(3): 410-8, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20065163

RESUMO

BACKGROUND: Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1alpha (also called alpha-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. METHODS AND RESULTS: In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1kappa. By developing a TPM1kappa-specific antibody, we found that the TPM1kappa protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1kappa in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1kappa. Incorporation of increased levels of TPM1kappa protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1kappa compared with TPM1alpha. CONCLUSIONS: This functional analysis of TPM1kappa provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Tropomiosina/química , Tropomiosina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adulto , Animais , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Dimerização , Feminino , Expressão Gênica/fisiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Homeostase/fisiologia , Humanos , Isomerismo , Masculino , Camundongos , Camundongos Transgênicos , Miofibrilas/metabolismo , Isoformas de Proteínas , Temperatura , Tropomiosina/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 297(1): H181-90, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429821

RESUMO

Tropomyosin (TM) is involved in Ca(2+)-mediated muscle contraction and relaxation in the heart. Striated muscle alpha-TM is the major isoform expressed in the heart. The expression of striated muscle beta-TM in the murine myocardium results in a decreased rate of relaxation and increased myofilament Ca(2+) sensitivity. Replacing the carboxyl terminus (amino acids 258-284) of alpha-TM with beta-TM (a troponin T-binding region) results in decreased rates of contraction and relaxation in the heart and decreased myofilament Ca(2+) sensitivity. We hypothesized that the putative internal troponin T-binding domain (amino acids 175-190) of beta-TM may be responsible for the increased myofilament Ca(2+) sensitivity observed when the entire beta-TM is expressed in the heart. To test this hypothesis, we generated transgenic mice that expressed chimeric TM containing beta-TM amino acids 175-190 in the backbone of alpha-TM (amino acids 1-174 and 191-284). These mice expressed 16-57% chimeric TM and did not develop cardiac hypertrophy or any other morphological changes. Physiological analysis showed that these hearts exhibited decreased rates of contraction and relaxation and a positive response to isoproterenol. Skinned fiber bundle analyses showed a significant increase in myofilament Ca(2+) sensitivity. Biophysical experiments demonstrated that the exchanged amino acids did not influence the flexibility of the TM. This is the first study to demonstrate that a specific domain within TM can increase the Ca(2+) sensitivity of the thin filament and affect sarcomeric performance. Furthermore, these results enhance the understanding of why TM mutations associated with familial hypertrophic cardiomyopathy demonstrate increased myofilament sensitivity to Ca(2+).


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Cálcio/farmacologia , Tropomiosina/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Substituição de Aminoácidos , Animais , Southern Blotting , Cardiotônicos/farmacologia , Dicroísmo Circular , Ecocardiografia , Técnicas In Vitro , Focalização Isoelétrica , Isoproterenol/farmacologia , Camundongos , Mutação/fisiologia , Bainha de Mielina/fisiologia , Contração Miocárdica/efeitos dos fármacos , Desnaturação Proteica , RNA/biossíntese , RNA/genética , Proteínas Recombinantes/farmacologia , Sarcômeros/efeitos dos fármacos , Tropomiosina/química , Tropomiosina/genética
4.
PLoS Biol ; 7(2): e39, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19243219

RESUMO

Colon cancer accounts for more than 10% of all cancer deaths annually. Our genetic evidence from Drosophila and previous in vitro studies of mammalian Atonal homolog 1 (Atoh1, also called Math1 or Hath1) suggest an anti-oncogenic function for the Atonal group of proneural basic helix-loop-helix transcription factors. We asked whether mouse Atoh1 and human ATOH1 act as tumor suppressor genes in vivo. Genetic knockouts in mouse and molecular analyses in the mouse and in human cancer cell lines support a tumor suppressor function for ATOH1. ATOH1 antagonizes tumor formation and growth by regulating proliferation and apoptosis, likely via activation of the Jun N-terminal kinase signaling pathway. Furthermore, colorectal cancer and Merkel cell carcinoma patients show genetic and epigenetic ATOH1 loss-of-function mutations. Our data indicate that ATOH1 may be an early target for oncogenic mutations in tissues where it instructs cellular differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Célula de Merkel/genética , Neoplasias Colorretais/genética , Genes Supressores de Tumor/fisiologia , Neoplasias Cutâneas/genética , Animais , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Análise Mutacional de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteínas Quinases JNK Ativadas por Mitógeno , Masculino , Camundongos , Camundongos Knockout , Mutação , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
5.
Circ Res ; 101(2): 205-14, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17556658

RESUMO

Mutations in striated muscle alpha-tropomyosin (alpha-TM), an essential thin filament protein, cause both dilated cardiomyopathy (DCM) and familial hypertrophic cardiomyopathy. Two distinct point mutations within alpha-tropomyosin are associated with the development of DCM in humans: Glu40Lys and Glu54Lys. To investigate the functional consequences of alpha-TM mutations associated with DCM, we generated transgenic mice that express mutant alpha-TM (Glu54Lys) in the adult heart. Results showed that an increase in transgenic protein expression led to a reciprocal decrease in endogenous alpha-TM levels, with total myofilament TM protein levels remaining unaltered. Histological and morphological analyses revealed development of DCM with progression to heart failure and frequently death by 6 months. Echocardiographic analyses confirmed the dilated phenotype of the heart with a significant decrease in the left ventricular fractional shortening. Work-performing heart analyses showed significantly impaired systolic, and diastolic functions and the force measurements of cardiac myofibers revealed that the myofilaments had significantly decreased Ca(2+) sensitivity and tension generation. Real-time RT-PCR quantification demonstrated an increased expression of beta-myosin heavy chain, brain natriuretic peptide, and skeletal actin and a decreased expression of the Ca(2+) handling proteins sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine receptor. Furthermore, our study also indicates that the alpha-TM54 mutation decreases tropomyosin flexibility, which may influence actin binding and myofilament Ca(2+) sensitivity. The pathological and physiological phenotypes exhibited by these mice are consistent with those seen in human DCM and heart failure. As such, this is the first mouse model in which a mutation in a sarcomeric thin filament protein, specifically TM, leads to DCM.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Hipertrófica Familiar/metabolismo , Mutação de Sentido Incorreto , Tropomiosina/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/patologia , Actinas/biossíntese , Animais , ATPases Transportadoras de Cálcio/biossíntese , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/patologia , Modelos Animais de Doenças , Ecocardiografia , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Contração Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Peptídeo Natriurético Encefálico/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , Tropomiosina/genética , Miosinas Ventriculares/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 293(2): H949-58, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17416600

RESUMO

Familial hypertrophic cardiomyopathy (FHC) is a disease caused by mutations in contractile proteins of the sarcomere. Our laboratory developed a mouse model of FHC with a mutation in the thin filament protein alpha-tropomyosin (TM) at amino acid 180 (Glu180Gly). The hearts of these mice exhibit dramatic systolic and diastolic dysfunction, and their myofilaments demonstrate increased calcium sensitivity. The mice also develop severe cardiac hypertrophy, with death ensuing by 6 mo. In an attempt to normalize calcium sensitivity in the cardiomyofilaments of the hypertrophic mice, we generated a chimeric alpha-/beta-TM protein that decreases calcium sensitivity in transgenic mouse cardiac myofilaments. By mating mice from these two models together, we tested the hypothesis that an attenuation of myofilament calcium sensitivity would modulate the severe physiological and pathological consequences of the FHC mutation. These double-transgenic mice "rescue" the hypertrophic phenotype by exhibiting a normal morphology with no pathological abnormalities. Physiological analyses of these rescued mice show improved cardiac function and normal myofilament calcium sensitivity. These results demonstrate that alterations in calcium response by modification of contractile proteins can prevent the pathological and physiological effects of this disease.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar/terapia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Contração Miocárdica , Miocárdio/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/metabolismo , Cardiomiopatia Hipertrófica Familiar/patologia , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Genótipo , Frequência Cardíaca , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Mutação , Contração Miocárdica/efeitos dos fármacos , Miocárdio/patologia , Fenótipo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sarcômeros/metabolismo , Índice de Gravidade de Doença , Fatores de Tempo , Tropomiosina/genética , Pressão Ventricular
7.
Am J Physiol Gastrointest Liver Physiol ; 292(1): G253-61, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17008558

RESUMO

Abrogation of Ron receptor tyrosine kinase function results in defects in macrophage activation and dysregulated acute inflammatory responses in vivo. Several naturally occurring constitutively active alternative forms of Ron have been identified, including from primary human tumors and tumor cell lines. One of these alternative forms, short-form (SF) Ron, is generated from an alternative start site in intron 10 of the Ron gene that eliminates most of the extracellular portion of the receptor and is overexpressed in several human cancers. To test the physiological significance of SF-Ron in vivo, mice were generated that solely express the full-length form of Ron (FL-Ron). Our results show that elimination of the capacity to express SF-Ron in vivo leads to augmented production of IFN-gamma from splenocytes following stimulation ex vivo with either concanavalin A or anti-CD3/T cell receptor monoclonal antibody. Moreover, in a concanavalin A-induced murine model of acute liver injury, FL-Ron mice have increased production of serum INF-gamma and serum alanine aminotransferase levels and worsened liver histology and overall survival compared with wild-type control mice. Taken together, these results suggest for the first time that SF-Ron impacts the progression of inflammatory immune responses in vivo and further support a role for the Ron receptor and its various forms in liver pathophysiology.


Assuntos
Concanavalina A/toxicidade , Interferon gama/biossíntese , Hepatopatias/patologia , Fígado/patologia , Receptores Proteína Tirosina Quinases/genética , Animais , Sequência de Bases , Doença Hepática Induzida por Substâncias e Drogas , Primers do DNA , DNA Complementar/genética , Regulação da Expressão Gênica/imunologia , Vetores Genéticos , Interferon gama/efeitos dos fármacos , Fígado/imunologia , Fígado/fisiopatologia , Hepatopatias/genética , Camundongos , RNA/genética , RNA/isolamento & purificação , Mapeamento por Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/imunologia , Linfócitos T/imunologia
8.
Am J Physiol Heart Circ Physiol ; 287(4): H1484-94, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15191887

RESUMO

Striated muscle tropomyosin (TM) plays an essential role in sarcomeric contraction and relaxation through its regulated movement on the thin filament. Previous work in our laboratory established that alpha- and beta-TM isoforms elicit physiological differences in sarcomeric performance. To address the significance of isoform-specific troponin T binding regions in TM, in this present work we replaced alpha-TM amino acids 175-190 and 258-284 with the beta-TM regions and expressed this chimeric protein in the hearts of transgenic mice. Hearts that express this chimeric protein exhibit significant decreases in rates of contraction and relaxation when assessed by ex vivo work-performing cardiac analyses. There are increases in time to peak pressure and in half-time to relaxation. These hearts respond appropriately to beta-adrenergic stimulation but do not attain control rates of contraction or relaxation. With increased expression of the transgene, 70% of the mice die by 5 mo of age without exhibiting gross pathological changes in the heart. Myofilaments from these mice have no differences in Ca(2+) sensitivity of percent maximum force, but there is a decrease in maximum tension development. Our data are the first to demonstrate that the troponin T binding regions of specific TM isoforms can alter sarcomeric performance without changing the Ca(2+) sensitivity of the myofilaments.


Assuntos
Músculo Esquelético/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Troponina T/genética , Citoesqueleto de Actina/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Sítios de Ligação , Cálcio/metabolismo , Quimera , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Músculo Esquelético/química , Contração Miocárdica/efeitos dos fármacos , Miocárdio/patologia , Estrutura Terciária de Proteína , RNA Mensageiro/análise , Troponina T/química , Troponina T/metabolismo
9.
Mol Cell Biochem ; 251(1-2): 33-42, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14575301

RESUMO

Familial hypertrophic cardiomyopathy, a disease caused by mutations in cardiac contractile proteins, is characterized by left and/or right ventricular hypertrophy, myocyte disarray, fibrosis, and cardiac arrhythmias that may lead to premature sudden death. Five distinct point mutations within alpha-tropomyosin are associated with the development of familial hypertrophic cardiomyopathy. Two of these mutations are found within a troponin T binding site, located at amino acids 175 and 180. In this study, we analyze a transgenic mouse model for one of the mutations that occur at codon 180: a substitution of a glutamic acid for a glycine. These mice develop severe cardiac hypertrophy, substantial interstitial fibrosis, and have an increased heart weight/ body weight ratio. Results show that calcium-handling proteins associated with the sarcoplasmic reticulum exhibit decreased expression. These alterations in gene expression, coupled with the structurally-altered tropomyosin, may contribute to the demonstrated decreased physiological performance exhibited by these transgenic mice. A DNA hybridization microarray analysis of the transgenic vs. control ventricular RNAs shows that 50 transcripts are differentially expressed by more than 100% during the onset of the hypertrophic process, many of which are associated with the extracellular matrix. This study demonstrates that mutations within tropomyosin can be severely disruptive of sarcomeric function, triggering a hypertrophic response coupled with a cascade of alterations in gene expression.


Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , Mutação Puntual , Tropomiosina/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Peso Corporal , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Cardiotônicos/farmacologia , Códon , Relação Dose-Resposta a Droga , Expressão Gênica , Ácido Glutâmico/metabolismo , Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , RNA/análise , Tropomiosina/química , Troponina/química
10.
J Biol Chem ; 278(25): 23204-11, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12690096

RESUMO

Striated muscle tropomyosin (TM) interacts with actin and the troponin complex to regulate calcium-mediated muscle contraction. Previous work by our laboratory established that alpha- and beta-TM isoforms elicit physiological differences in sarcomeric performance. Heart myofilaments containing beta-TM exhibit an increased sensitivity to calcium that is associated with a decrease in the rate of relaxation and a prolonged time of relaxation. To address whether the carboxyl-terminal, troponin T binding domain of beta-TM is responsible for these physiological alterations, we exchanged the 27 terminal amino acids of alpha-TM (amino acids 258 -284) for the corresponding region in beta-TM. Hearts of transgenic mice that express this chimeric TM protein exhibit significant decreases in their rates of contraction and relaxation when assessed by ex vivo work-performing cardiac analyses. There are increases in the time to peak pressure and a dramatic increase in end diastolic pressure. In myofilaments, this chimeric protein induces depression of maximum tension and ATPase rate, together with a significant decrease in sensitivity to calcium. Our data are the first to demonstrate that the TM isoform-specific carboxyl terminus is a critical determinant of sarcomere performance and calcium sensitivity in both the whole heart and in isolated myofilaments.


Assuntos
Músculo Esquelético/fisiologia , Tropomiosina/química , Tropomiosina/fisiologia , Animais , Sítios de Ligação , Pressão Sanguínea , Eletroforese em Gel Bidimensional , Coração/efeitos dos fármacos , Coração/fisiologia , Frequência Cardíaca , Técnicas In Vitro , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tropomiosina/genética , Troponina T/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 283(4): H1344-53, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12234784

RESUMO

Tropomyosin (TM), an integral component of the thin filament, is encoded by three striated muscle isoforms: alpha-TM, beta-TM, and TPM 3. Although the alpha-TM and beta-TM isoforms are well characterized, less is known about the function of the TPM 3 isoform, which is predominantly found in the slow-twitch musculature of mammals. To determine its functional significance, we ectopically expressed this isoform in the hearts of transgenic mice. We generated six transgenic mouse lines that produce varying levels of TPM 3 message with ectopic TPM 3 protein accounting for 40-60% of the total striated muscle tropomyosin. The transgenic mice have normal life spans and exhibit no morphological abnormalities in their sarcomeres or hearts. However, there are significant functional alterations in cardiac performance. Physiological assessment of these mice by using closed-chest analyses and a work-performing model reveals a hyperdynamic effect on systolic and diastolic function. Analysis of detergent-extracted fiber bundles demonstrates a decreased sensitivity to Ca(2+) in force generation and a decrease in length-dependent Ca(2+) activation with no detectable change in interfilament spacing as determined by using X-ray diffraction. Our data are the first to demonstrate that TM isoforms can affect sarcomeric performance by decreasing sensitivity to Ca(2+) and influencing the length-dependent Ca(2+) activation.


Assuntos
Citoesqueleto de Actina/fisiologia , Cálcio/metabolismo , Contração Miocárdica/fisiologia , Tropomiosina/genética , Tropomiosina/metabolismo , Animais , Expressão Gênica/fisiologia , Isomerismo , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Fenótipo , RNA Mensageiro/análise , Tropomiosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA