Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Eur Biophys J ; 52(6-7): 487-495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37644211

RESUMO

The Nudt15 enzyme of the NUDIX protein family is the subject of extensive study due to its action on thiopurine drugs used in the treatment of cancer and inflammatory diseases. In addition to thiopurines, Nudt15 is enzymatically active in vitro on several nucleotide substrates. It has also been suggested that this enzyme may play a role in 5'RNA turnover by hydrolyzing m7GDP, a product of mRNA decapping. However, no detailed studies on this substrate with Nudt15 are available. Here, we analyzed the enzymatic activity of Nudt15 with m7GDP, its triphosphate form m7GTP, and the trimethylated counterparts (m32,2,7GDP and m32,2,7GTP). Kinetic data revealed a moderate activity of Nudt15 toward these methylated mononucleotides compared to the dGTP substrate. However m7GDP and m32,2,7GDP showed a distinct stabilization of Nudt15 upon ligand binding, in the same range as dGTP, and thus these two mononucleotides may be used as leading structures in the design of small molecule binders of Nudt15.


Assuntos
Guanosina , Pirofosfatases , Animais , Pirofosfatases/química , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA Mensageiro , Mamíferos/genética , Mamíferos/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1867(9): 130400, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301333

RESUMO

Recent findings have substantially broadened our knowledge about the diversity of modifications of the 5'end of RNAs, an issue generally attributed to mRNA cap structure (m7GpppN). Nudt12 is one of the recently described new enzymatic activities involved in cap metabolism. However, in contrast to its roles in metabolite-cap turnover (e.g., NAD-cap) and NADH/NAD metabolite hydrolysis, little is known regarding its hydrolytic activity towards dinucleotide cap structures. In order to gain further insight into this Nudt12 activity, comprehensive analysis with a spectrum of cap-like dinucleotides was performed with respect to different nucleotide types adjacent to the (m7)G moiety and its methylation status. Among the tested compounds, GpppA, GpppAm, and Gpppm6Am were identified as novel potent Nudt12 substrates, with KM values in the same range as that of NADH. Interestingly, substrate inhibition of Nudt12 catalytic activity was detected in the case of the GpppG dinucleotide, a phenomenon not reported to date. Finally, comparison of Nudt12 with DcpS and Nud16, two other enzymes with known activity on dinucleotide cap structures, revealed their overlapping and more specific substrates. Altogether, these findings provide a basis for clarifying the role of Nudt12 in cap-like dinucleotide turnover.


Assuntos
NAD , Pirofosfatases , NAD/metabolismo , Pirofosfatases/química , RNA Mensageiro/metabolismo , Hidrólise , Capuzes de RNA/genética , Capuzes de RNA/química , Capuzes de RNA/metabolismo
3.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681586

RESUMO

Nudt16 is a member of the NUDIX family of hydrolases that show specificity towards substrates consisting of a nucleoside diphosphate linked to another moiety X. Several substrates for hNudt16 and various possible biological functions have been reported. However, some of these reports contradict each other and studies comparing the substrate specificity of the hNudt16 protein are limited. Therefore, we quantitatively compared the affinity of hNudt16 towards a set of previously published substrates, as well as identified novel potential substrates. Here, we show that hNudt16 has the highest affinity towards IDP and GppG, with Kd below 100 nM. Other tested ligands exhibited a weaker affinity of several orders of magnitude. Among the investigated compounds, only IDP, GppG, m7GppG, AppA, dpCoA, and NADH were hydrolyzed by hNudt16 with a strong substrate preference for inosine or guanosine containing compounds. A new identified substrate for hNudt16, GppG, which binds the enzyme with an affinity comparable to that of IDP, suggests another potential regulatory role of this protein. Molecular docking of hNudt16-ligand binding inside the hNudt16 pocket revealed two binding modes for representative substrates. Nucleobase stabilization by Π stacking interactions with His24 has been associated with strong binding of hNudt16 substrates.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Pirofosfatases/metabolismo , Sítios de Ligação , Dicroísmo Circular , Humanos , Hidrólise , Cinética , Simulação de Acoplamento Molecular , Estabilidade Proteica , Especificidade por Substrato , Termodinâmica
4.
ACS Omega ; 5(19): 10759-10766, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455195

RESUMO

Decapping scavenger enzymes (DcpSs) are important players in mRNA degradation machinery and conserved in eukaryotes. Importantly, human DcpS is the recognized target for spinal muscular atrophy (SMA) and acute myeloid leukemia (AML) therapy, and has recently been connected to development of intellectual disability. Most recombinant DcpSs used in biochemical and biophysical studies are prepared as tagged proteins, with polyhistidine (His-tag) at the N-terminus or C-terminus. Our work is the first report on the parallel characterization of three versions of DcpSs (native and N- or C-terminally tagged) of three species (humans, Caenorhabditis elegans , and Ascaris suum). The native forms of all three enzymes were prepared by N-(His)10 tag cleavage. Protein thermal stability, measured by differential scanning fluorimetry (DSF), was unaffected in the case of native and tagged versions of human and A. suum DcpS; however, the melting temperature (T m) of C. elagans DcpS of was significantly influenced by the presence of the additional N- or C-tag. To investigate the impact of the tag positioning on the catalytic properties of DcpS, we tested the hydrolytic activity of native DcpS and their His-tagged counterparts toward cap dinucleotides (m7GpppG and m3 2,2,7GpppG) and m7GDP. The kinetic data indicate that dinucleotide substrates are hydrolyzed with comparable efficiency by native human and A. suum DcpS and their His-tagged forms. In contrast, both His-tagged C. elegans DcpSs exhibited higher activity toward m7GpppG than the native enzyme. m7GDP is resistant to enzymatic cleavage by all three forms of human and nematode DcpS.

5.
ACS Omega ; 4(17): 17576-17580, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31656932

RESUMO

mRNA degradation is a key mechanism of gene expression regulation. In the 3' → 5' decay pathway, mRNA is degraded by the exosome complex and the resulting cap dinucleotide or short-capped oligonucleotide is hydrolyzed mainly by a decapping scavenger enzyme (DcpS)-a member of the histidine triad family. The decapping mechanism is similar for DcpS from different species; however, their respective substrate specificities differ. In this paper, we describe experiments exploring DcpS activity from human (hDcps), Caenorhabditis elegans (CeDcpS), and Ascaris suum (AsDcpS) toward dinucleotide cap analogues modified at the N2 position of 7-methylguanosine. Various alkyl substituents were tested, and cap analogues with a longer than three-carbon chain were nonhydrolyzable by hDcpS and CeDcpS. Resistance of the modified cap analogues to hDcpS and CeDcpS may be associated with their weaker binding with enzymes.

6.
RNA ; 24(5): 633-642, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483298

RESUMO

Human Nudt16 (hNudt16) is a member of the Nudix family of hydrolases, comprising enzymes catabolizing various substrates including canonical (d)NTPs, oxidized (d)NTPs, nonnucleoside polyphosphates, and capped mRNAs. Decapping activity of the Xenopus laevis (X29) Nudt16 homolog was observed in the nucleolus, with a high specificity toward U8 snoRNA. Subsequent studies have reported cytoplasmic localization of mammalian Nudt16 with cap hydrolysis activity initiating RNA turnover, similar to Dcp2. The present study focuses on hNudt16 and its hydrolytic activity toward dinucleotide cap analogs and short capped oligonucleotides. We performed a screening assay for potential dinucleotide and oligonucleotide substrates for hNudt16. Our data indicate that dinucleotide cap analogs and capped oligonucleotides containing guanine base in the first transcribed nucleotide are more susceptible to enzymatic digestion by hNudt16 than their counterparts containing adenine. Furthermore, unmethylated dinucleotides (GpppG and ApppG) and respective oligonucleotides (GpppG-16nt and GpppA-16nt) were hydrolyzed by hNudt16 with greater efficiency than were m7GpppG and m7GpppG-16nt. In conclusion, we found that hNudt16 hydrolysis of dinucleotide cap analogs and short capped oligonucleotides displayed a broader spectrum specificity than is currently known.


Assuntos
Endorribonucleases/metabolismo , Pirofosfatases/metabolismo , Análogos de Capuz de RNA/metabolismo , Humanos , Hidrólise , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Análogos de Capuz de RNA/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidade por Substrato
7.
Biochem Biophys Res Commun ; 464(1): 89-93, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26049109

RESUMO

Scavenger decapping enzymes (DcpS) are involved in eukaryotic mRNA degradation process. They catalyze the cleavage of residual cap structure m(7)GpppN and/or short capped oligonucleotides resulting from exosom-mediated the 3' to 5' digestion. For the specific cap recognition and efficient degradation by DcpS, the positive charge at N7 position of guanine moiety is required. Here we examine the role the N7 substitution within the cap structure on the interactions with DcpS (human, Caenorhabditis elegans and Ascaris suum) comparing the hydrolysis rates of dinucleotide cap analogs (m(7)GpppG, et(7)GpppG, but(7)GpppG, bn(7)GpppG) and the binding affinities of hydrolysis products (m(7)GMP, et(7)GMP, but(7)GMP, bn(7)GMP). Our results show the conformational flexibility of the region within DcpS cap-binding pocket involved in the interaction with N7 substituted guanine, which enables accommodation of substrates with differently sized N7 substituents.


Assuntos
Proteínas de Caenorhabditis elegans/química , Endorribonucleases/química , Pirofosfatases/química , Análogos de Capuz de RNA/química , Estabilidade de RNA/genética , Proteínas Recombinantes de Fusão/química , Animais , Ascaris suum/genética , Ascaris suum/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Conformação de Ácido Nucleico , Pirofosfatases/genética , Pirofosfatases/metabolismo , Análogos de Capuz de RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática
8.
Nucleic Acids Res ; 42(16): 10245-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25150148

RESUMO

Modified mRNA cap analogs aid in the study of mRNA-related processes and may enable creation of novel therapeutic interventions. We report the synthesis and properties of 11 dinucleotide cap analogs bearing a single boranophosphate modification at either the α-, ß- or γ-position of the 5',5'-triphosphate chain. The compounds can potentially serve either as inhibitors of translation in cancer cells or reagents for increasing expression of therapeutic proteins in vivo from exogenous mRNAs. The BH3-analogs were tested as substrates and binding partners for two major cytoplasmic cap-binding proteins, DcpS, a decapping pyrophosphatase, and eIF4E, a translation initiation factor. The susceptibility to DcpS was different between BH3-analogs and the corresponding analogs containing S instead of BH3 (S-analogs). Depending on its placement, the boranophosphate group weakened the interaction with DcpS but stabilized the interaction with eIF4E. The first of the properties makes the BH3-analogs more stable and the second, more potent as inhibitors of protein biosynthesis. Protein expression in dendritic cells was 2.2- and 1.7-fold higher for mRNAs capped with m2 (7,2'-O)GppBH3pG D1 and m2 (7,2'-O)GppBH3pG D2, respectively, than for in vitro transcribed mRNA capped with m2 (7,3'-O)GpppG. Higher expression of cancer antigens would make mRNAs containing m2 (7,2'-O)GppBH3pG D1 and m2 (7,2'-O)GppBH3pG D2 favorable for anticancer immunization.


Assuntos
Boranos/química , Fosfatos/química , Inibidores da Síntese de Proteínas/química , Análogos de Capuz de RNA/química , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Células Dendríticas/metabolismo , Endorribonucleases/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Pirofosfatases/metabolismo , Análogos de Capuz de RNA/síntese química , Análogos de Capuz de RNA/metabolismo , Análogos de Capuz de RNA/farmacologia , Estereoisomerismo
9.
Biochim Biophys Acta ; 1839(6): 452-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24742626

RESUMO

Decapping Scavenger (DcpS) enzyme rids eukaryotic cells of short mRNA fragments containing the 5' mRNA cap structure, which appear in the 3'→5' mRNA decay pathway, following deadenylation and exosome-mediated turnover. The unique structural properties of the cap, which consists of 7-methylguanosine attached to the first transcribed nucleoside by a triphosphate chain (m(7)GpppN), guarantee its resistance to non-specific exonucleases. DcpS enzymes are dimers belonging to the Histidine Triad (HIT) superfamily of pyrophosphatases. The specific hydrolysis of m(7)GpppN by DcpS yields m(7)GMP and NDP. By precluding inhibition of other cap-binding proteins by short m(7)GpppN-containing mRNA fragments, DcpS plays an important role in the cap-dependent mRNA metabolism. Over the past decade, lots of new structural, biochemical and biophysical data on DcpS has accumulated. We attempt to integrate these results, referring to DcpS enzymes from different species. Such a synergistic characteristic of the DcpS structure and activity might be useful for better understanding of the DcpS catalytic mechanism, its regulatory role in gene expression, as well as for designing DcpS inhibitors of potential therapeutic application, e.g. in spinal muscular atrophy.


Assuntos
Endorribonucleases/química , Endorribonucleases/metabolismo , Capuzes de RNA/química , RNA Mensageiro/metabolismo , Endorribonucleases/genética , Humanos , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/metabolismo
10.
FEBS J ; 280(24): 6508-27, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24119043

RESUMO

Decapping scavenger (DcpS) assists in precluding inhibition of cap-binding proteins by hydrolyzing cap species remaining after mRNA 3'→5' degradation. Its significance was reported in splicing, translation initiation and microRNA turnover. Here we examine the structure and binding mode of DcpS from Caenorhabditis elegans (CeDcpS) using a large collection of chemically modified methylenebis(phosphonate), imidodiphosphate and phosphorothioate cap analogs. We determine that CeDcpS is a homodimer and propose high accuracy structural models of apo- and m(7) GpppG-bound forms. The analysis of CeDcpS regioselectivity uncovers that the only site of hydrolysis is located between the ß and γ phosphates. Structure-affinity relationship studies of cap analogs for CeDcpS reveal molecular determinants for efficient cap binding: a strong dependence on the type of substituents in the phosphate chain, and reduced binding affinity for either methylated hydroxyl groups of m(7) Guo or an extended triphosphate chain. Docking analysis of cap analogs in the CeDcpS active site explains how both phosphate chain mobility and the orientation in the cap-binding pocket depend on the number of phosphate groups, the substituent type and the presence of the second nucleoside. Finally, the comparison of CeDcpS with its well known human homolog provides general insights into DcpS-cap interactions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Pirofosfatases/metabolismo , Análogos de Capuz de RNA/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Domínio Catalítico , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Humanos , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Pirofosfatases/química , Pirofosfatases/genética , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/genética , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Mensageiro/genética
11.
Biochemistry ; 51(40): 8003-13, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22985415

RESUMO

Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' → 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' → 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.


Assuntos
Endorribonucleases/metabolismo , Nucleotídeos de Guanina/metabolismo , Guanosina Difosfato/análogos & derivados , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Endorribonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica , Nucleotídeos de Guanina/química , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Humanos , Hidrólise , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae , Especificidade da Espécie
12.
FEBS J ; 277(14): 3003-13, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20546305

RESUMO

The activity of the Caenorhabditis elegans scavenger decapping enzyme (DcpS) on its natural substrates and dinucleotide cap analogs, modified with regard to the nucleoside base or ribose moiety, has been examined. All tested dinucleotides were specifically cleaved between beta- and gamma-phosphate groups in the triphosphate chain. The kinetic parameters of enzymatic hydrolysis (K(m), V(max)) were determined using fluorescence and HPLC methods, as complementary approaches for the kinetic studies of C. elegans DcpS. From the kinetic data, we determined which parts of the cap structure are crucial for DcpS binding and hydrolysis. We showed that m(3)(2,2,7)GpppG and m(3)(2,2,7)GpppA are cleaved with higher rates than their monomethylated counterparts. However, the higher specificity of C. elegans DcpS for monomethylguanosine caps is illustrated by the lower K(m) values. Modifications of the first transcribed nucleotide did not affect the activity, regardless of the type of purine base. Our findings suggest C. elegans DcpS flexibility in the first transcribed nucleoside-binding pocket. Moreover, although C. elegans DcpS accommodates bulkier groups in the N7 position (ethyl or benzyl) of the cap, both 2'-O- and 3'-O-methylations of 7-methylguanosine result in a reduction in hydrolysis by two orders of magnitude.


Assuntos
Biocatálise , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Pirofosfatases/metabolismo , Análogos de Capuz de RNA/metabolismo , Capuzes de RNA/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Cromatografia Líquida de Alta Pressão , Fosfatos de Dinucleosídeos/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Cinética , Dados de Sequência Molecular , Pirofosfatases/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Especificidade por Substrato
13.
RNA ; 15(8): 1554-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19541768

RESUMO

A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5'-mRNA cap, i.e., m(7)GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m(7)GMP (or m(2,7)GMP) as one of the reaction products. Interestingly, m(7)Gpppm(3)(N6, N6, 2'O)A was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m(7)Gpppm(3)(N6, N6, 2'O)Apm(2'O)Apm(2'O)Cpm(2)(N3, 2'O)U, that occurs in these organisms.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Hidrolases Anidrido Ácido/genética , Sequência de Aminoácidos , Animais , Fosfatos de Dinucleosídeos/metabolismo , Genes de Protozoários , Cinética , Metilação , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Protozoários/genética , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trypanosoma brucei brucei/genética
14.
Photochem Photobiol Sci ; 7(9): 1054-62, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18754052

RESUMO

The phototransformation of 2-chloro, 6-chloro and 2,6-dichloropurines under UVC excitation (254 nm) has been studied and the major photoproducts have been identified using absorption spectroscopy, HPLC and mass spectrometry. It was shown that hydroxypurines were formed as the main products for all three investigated compounds both in the presence and absence of oxygen. In the case of 6-chloro- and 2,6-dichloropurine, a photodimer is also formed as a minor photoproduct in the absence of oxygen but is efficiently quenched in the presence of oxygen. Nanosecond photolysis experiments also revealed significant intersystem crossing to the triplet state of the chloropurines which has been characterized (transient absorption spectra, triplet formation quantum yields and rate constants of quenching by oxygen, Mn2+ ions and ground state). Experimental evidence allows to conclude that the triplet state is involved in photodimer formation whereas the hydroxypurine is formed from the reaction of the excited singlet state of chloropurines with the solvent (water addition) through heterolytic C-Cl bond rupture. Mass spectrometry and 1H NMR results allowed to propose a chemical pathway for dimer formation in the case of 2,6-dichloropurine in a two-step process: first a homolytic rupture of C-Cl bond in the triplet state of the molecule with the formation of purinyl radicals, which subsequently react with an excess of ground state molecules and/or hydroxypurine primarily formed.


Assuntos
Compostos Clorados/química , Purinas/química , Biologia Molecular , Oxirredução/efeitos da radiação , Fotoquímica , Espectrofotometria
15.
RNA ; 14(6): 1119-31, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18430890

RESUMO

Analogs of the mRNA cap are widely employed to study processes involved in mRNA metabolism as well as being useful in biotechnology and medicinal applications. Here we describe synthesis of six dinucleotide cap analogs bearing a single phosphorothioate modification at either the alpha, beta, or gamma position of the 5',5'-triphosphate chain. Three of them were also modified with methyl groups at the 2'-O position of 7-methylguanosine to produce anti-reverse cap analogs (ARCAs). Due to the presence of stereogenic P centers in the phosphorothioate moieties, each analog was obtained as a mixture of two diastereomers, D1 and D2. The mixtures were resolved by RP HPLC, providing 12 different compounds. Fluorescence quenching experiments were employed to determine the association constant (K(AS)) for complexes of the new analogs with eIF4E. We found that phosphorothioate modifications generally stabilized the complex between eIF4E and the cap analog. The most strongly bound phosphorothioate analog (the D1 isomer of the beta-substituted analog m(7)Gpp(S)pG) was characterized by a K(AS) that was more than fourfold higher than that of its unmodified counterpart (m(7)GpppG). All analogs modified in the gamma position were resistant to hydrolysis by the scavenger decapping pyrophosphatase DcpS from both human and Caenorhabditis elegans sources. The absolute configurations of the diastereomers D1 and D2 of analogs modified at the alpha position (i.e., m(7)Gppp(S)G and m(2) (7,2'-O )Gppp(S)G) were established as S(P) and R(P) , respectively, using enzymatic digestion and correlation with the S(P) and R(P) diastereomers of guanosine 5'-O-(1-thiodiphosphate) (GDPalphaS). The analogs resistant to DcpS act as potent inhibitors of in vitro protein synthesis in rabbit reticulocyte lysates.


Assuntos
Proteínas de Caenorhabditis elegans/química , Endorribonucleases/química , Fator de Iniciação 4E em Eucariotos/química , Fosfatos/química , Oligonucleotídeos Fosforotioatos/química , Pirofosfatases/química , Análogos de Capuz de RNA/química , Animais , Guanosina/análogos & derivados , Guanosina/química , Humanos , Hidrólise , Estrutura Molecular , Oligonucleotídeos Fosforotioatos/síntese química , Oligonucleotídeos Fosforotioatos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Análogos de Capuz de RNA/síntese química , Análogos de Capuz de RNA/farmacologia
16.
Nucleosides Nucleotides Nucleic Acids ; 26(10-12): 1301-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18066772

RESUMO

Enzymatic cleavage of the P-chiral diastereoisomers of the 5' mRNA cap analogue bearing phosphorothioate moiety in alfa position of 5',5'-triphosphate bridge (m(7)Gppp(S)G D1 and D2) was performed by human Decapping Scavenger (DcpS) enzyme. Analysis of the degradation products allowed to estimate the absolute configuration at the asymmetric phosphorus atoms in examined compounds via correlation with the R(P) and S(P) diastereoisomers of guanosine 5'-O-(1-thiodiphosphate) (GDPalphaS).


Assuntos
Endorribonucleases/química , Conformação de Ácido Nucleico , Análogos de Capuz de RNA/química , Capuzes de RNA/química , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/análise , Humanos , Hidrólise , Tionucleotídeos/análise
17.
Nucleosides Nucleotides Nucleic Acids ; 26(10-12): 1349-52, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18066781

RESUMO

Eukaryotic cells utilize scavenger decapping enzymes to degrade cap structure following 3'-5' mRNA decay. Human DcpS recently has been described as a highly specific hydrolase (a member of the HIT family) that catalyses the cleavage of m(7)GpppG and short capped oligoribonucleotides. We have demonstrated here that cap-1 (m(7)GpppGm) is a preferred substrate among several investigated dinucleotide cap analogues m(7)Gp(n)N (n = 3-5, N is a purine or pyrimidine base) and m(7)GMP is always one of the reaction product. Cap analogues containing pyrimidine base instead of guanine or diphosphate chain are resistant to hydrolysis catalyzed by human scavenger. Contrary to the other enzymes of HIT family, hDcpS activity is not stimulated by Mg(2+).


Assuntos
Fosfatos de Dinucleosídeos/química , Endorribonucleases/química , Análogos de Capuz de RNA/química , Estabilidade de RNA , Humanos , Hidrólise
18.
Biophys Chem ; 129(2-3): 289-97, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17651889

RESUMO

The kinetics of binding of five analogues of the 5'-mRNA cap, differing in size and electric charge, to the eukaryotic initiation factor eIF4E, at 20 degrees C, pH 7.2, and ionic strength of 150 mM, were measured, after mixing solutions of comparable concentrations of the reagents, in a stopped-flow spectrofluorimeter. The registered stopped-flow signals were fitted using an efficient software package, called Dyna Fit, based on a numerical solution of the kinetic rate equations for assumed reaction mechanisms. One-, two-, and three-step binding models were considered. The quality of fits for these models were compared using two statistical criteria: Akaike's Information Criterion and Bayesian Information Criterion. Based on resulting probabilities of the models, it was concluded that for all investigated ligands a one-step binding model has essentially no support in the experimental observations. Our conclusions were also analysed from the perspective of kinetic transients obtained for cap-eIF4E systems under the so called pseudo-first order reaction condition, which result in the linear correlation of the observed association rate constant with ligand concentration. The existence of such a linear correlation is usually considered as proof of a one-step binding mechanism. The kinetic and optical parameters, derived from fitting a two-step cap-binding model with the DynaFit, were used to simulate kinetic transients under pseudo-first order reaction conditions. It appeared that the observed association rate constants derived from these simulated transients are also linearly correlated with the ligand concentration. This indicated that these linear dependencies are not sufficient to conclude a one-step binding.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Modelos Químicos , Análogos de Capuz de RNA/química , RNA Mensageiro/química , Animais , Concentração de Íons de Hidrogênio , Cinética , Camundongos , Software , Temperatura
19.
Bioorg Med Chem ; 14(9): 3223-30, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16431118

RESUMO

Four novel 5' mRNA cap analogs have been synthesized with one of the pyrophosphate bridge oxygen atoms of the triphosphate linkage replaced with a methylene group. The analogs were prepared via reaction of nucleoside phosphor/phosphon-1-imidazolidates with nucleoside phosphate/phosphonate in the presence of ZnCl2. Three of the new cap analogs are completely resistant to degradation by human DcpS, the enzyme responsible for hydrolysis of free cap resulting from 3' to 5' cellular mRNA decay. One of the new analogs has very high affinity for binding to human DcpS. Two of these analogs are Anti Reverse Cap Analogs which ensures that they are incorporated into mRNA chains exclusively in the correct orientation. These new cap analogs should be useful in a variety of biochemical studies, in the analysis of the cellular function of decapping enzymes, and as a basis for further development of modified cap analogs as potential anti-cancer and anti-parasite drugs.


Assuntos
Endorribonucleases/metabolismo , Humanos , Hidrólise , Estrutura Molecular , Capuzes de RNA/síntese química , Capuzes de RNA/química , Capuzes de RNA/metabolismo , Especificidade por Substrato , Titulometria
20.
Artigo em Inglês | MEDLINE | ID: mdl-16247972

RESUMO

A new kinetic model is presented for analysis of experimental data of oxidation process catalyzed by milk xanthine oxidase. The kinetics for two substrates, xanthine and its analog 2-chloroadenine, in a broad pH range (5.8-9.0) are best described by an equation which is a rational function of degree 2:3 and 2:2, respectively.


Assuntos
Oxigênio/química , Nucleosídeos de Purina/química , Xantina Oxidase/química , Adenina/análogos & derivados , Adenina/química , Fenômenos Químicos , Química , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Modelos Teóricos , Análise de Regressão , Xantina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA