Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 42(12): 6912-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26632047

RESUMO

PURPOSE: To quantify the ability of electronic portal imaging device (EPID) dosimetry used during treatment (in vivo) in detecting variations that can occur in the course of patient treatment. METHODS: Images of transmitted radiation from in vivo EPID measurements were converted to a 2D planar dose at isocenter and compared to the treatment planning dose using a prototype software system. Using the treatment planning system (TPS), four different types of variability were modeled: overall dose scaling, shifting the positions of the multileaf collimator (MLC) leaves, shifting of the patient position, and changes in the patient body contour. The gamma pass rate was calculated for the modified and unmodified plans and used to construct a receiver operator characteristic (ROC) curve to assess the detectability of the different parameter variations. The detectability is given by the area under the ROC curve (AUC). The TPS was also used to calculate the impact of the variations on the target dose-volume histogram. RESULTS: Nine intensity modulation radiation therapy plans were measured for four different anatomical sites consisting of 70 separate fields. Results show that in vivo EPID dosimetry was most sensitive to variations in the machine output, AUC = 0.70 - 0.94, changes in patient body habitus, AUC = 0.67 - 0.88, and systematic shifts in the MLC bank positions, AUC = 0.59 - 0.82. These deviations are expected to have a relatively small clinical impact [planning target volume (PTV) D99 change <7%]. Larger variations have even higher detectability. Displacements in the patient's position and random variations in MLC leaf positions were not readily detectable, AUC < 0.64. The D99 of the PTV changed by up to 57% for the patient position shifts considered here. CONCLUSIONS: In vivo EPID dosimetry is able to detect relatively small variations in overall dose, systematic shifts of the MLC's, and changes in the patient habitus. Shifts in the patient's position which can introduce large changes in the target dose coverage were not readily detected.


Assuntos
Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Área Sob a Curva , Simulação por Computador , Conjuntos de Dados como Assunto , Humanos , Curva ROC , Radiometria/instrumentação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada/métodos
2.
Phys Rev Lett ; 113(24): 241803, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25541766

RESUMO

The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged ν(e) charged current cross section on carbon is measured to be ⟨σ⟩(ϕ)=1.11±0.10(stat)±0.18(syst)×10⁻³8 cm²/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10⁻³8 cm²/nucleon and the GENIE prediction is 1.08×10⁻³8 cm²/nucleon. The total ν(e) charged current cross-section result is also in agreement with data from the Gargamelle experiment.

3.
Phys Rev Lett ; 112(18): 181801, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856687

RESUMO

New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10(20) protons on target, T2K has fit the energy-dependent νµ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin(2)(θ23) is 0.514(-0.056)(+0.055) (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm32(2)=(2.51±0.10)×10(-3) eV(2)/c(4) (inverted hierarchy: Δm13(2)=(2.48±0.10)×10(-3) eV(2)/c(4)). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

4.
Phys Rev Lett ; 112(6): 061802, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24580687

RESUMO

The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm(32)(2) and a CP violating phase δ(CP). In this neutrino oscillation scenario, assuming |Δm(32)(2)|=2.4×10(-3) eV(2), sin(2)θ(23)=0.5, and Δm322>0 (Δm(32)(2)<0), a best-fit value of sin(2)2θ(13)=0.140(-0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at δ(CP)=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ(13) from reactor experiments, some values of δ(CP) are disfavored at the 90% C.L.

5.
Phys Rev Lett ; 111(21): 211803, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313479

RESUMO

The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×10(20) protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin2(θ23)=0.514±0.082 and mass splitting |Δm(32)(2)|=2.44(-0.15)(+0.17)×10(-3) eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

6.
Phys Rev Lett ; 107(4): 041801, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21866992

RESUMO

The T2K experiment observes indications of ν(µ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm(23)(2)| = 2.4×10(-3) eV(2), sin(2)2θ(23) = 1 and sin(2)2θ(13) = 0, the expected number of such events is 1.5±0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2θ(13) < 0.28(0.34) for δ(CP) = 0 and a normal (inverted) hierarchy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA