Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Anal Chim Acta ; 1312: 342758, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834268

RESUMO

BACKGROUND: The selection of the sample treatment strategy is a crucial step in the metabolomics workflow. Solid phase microextraction (SPME) is a sample processing methodology with great potential for use in untargeted metabolomics of tissue samples. However, its utilization is not as widespread as other standard protocols involving steps of tissue collection, metabolism quenching, homogenization, and extraction of metabolites by solvents. Since SPME allows us to perform all these steps in one action in tissue samples, in addition to other advantages, it is necessary to know whether this methodology produces similar or comparable metabolome and lipidome coverage and performance to classical methods. RESULTS: SPME and homogenization with solid-liquid extraction (Homo-SLE) sample treatment methods were applied to healthy murine kidney tissue, followed by comprehensive metabolomics and lipidomics analyses. In addition, it has been tested whether freezing and storage of the tissue causes alterations in the renal metabolome and lipidome, so the analyses were performed on fresh and frozen tissue samples Lipidomics analysis revealed the exclusive presence of different structural membrane and intracellular lipids in the Homo-SLE group. Conversely, all annotated metabolites were detected in both groups. Notably, the freezing of the sample mainly causes a decrease in the levels of most lipid species and an increase in metabolites such as amino acids, purines, and pyrimidines. These alterations are principally detected in a statistically significant way by SPME methodology. Finally, the samples of both methodologies show a positive correlation in all the analyses. SIGNIFICANCE: These results demonstrate that in SPME processing, as long as the fundamentals of non-exhaustive extraction in a pre-equilibrium kinetic regime, extraction in a tissue localized area, the chemistry of the fiber coating and non-homogenization of the tissue are taken into account, is an excellent method to use in kidney tissue metabolomics; since this methodology presents an easy-to-use, efficient, and less invasive approach that simplifies the different sample processing steps.


Assuntos
Rim , Metabolômica , Microextração em Fase Sólida , Microextração em Fase Sólida/métodos , Animais , Metabolômica/métodos , Rim/metabolismo , Rim/química , Camundongos , Extração Líquido-Líquido/métodos , Metaboloma , Masculino , Camundongos Endogâmicos C57BL
2.
Front Mol Biosci ; 11: 1341108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784665

RESUMO

Introduction: Normothermic ex vivo kidney perfusion (NEVKP) is designed to replicate physiological conditions to improve graft outcomes. A comparison of the impact of hypothermic and normothermic preservation techniques on graft quality was performed by lipidomic profiling using solid-phase microextraction (SPME) chemical biopsy as a minimally invasive sampling approach. Methods: Direct kidney sampling was conducted using SPME probes coated with a mixed-mode extraction phase in a porcine autotransplantation model of the renal donor after cardiac death, comparing three preservation methods: static cold storage (SCS), NEVKP, and hypothermic machine perfusion (HMP). The lipidomic analysis was done using ultra-high-performance liquid chromatography coupled with a Q-Exactive Focus Orbitrap mass spectrometer. Results: Chemometric analysis showed that the NEVLP group was separated from SCS and HMP groups. Further in-depth analyses indicated significantly (p < 0.05, VIP > 1) higher levels of acylcarnitines, phosphocholines, ether-linked and longer-chain phosphoethanolamines, triacylglycerols and most lysophosphocholines and lysophosphoethanolamines in the hypothermic preservation group. The results showed that the preservation temperature has a more significant impact on the lipidomic profile of the kidney than the preservation method's mechanical characteristics. Conclusion: Higher levels of lipids detected in the hypothermic preservation group may be related to ischemia-reperfusion injury, mitochondrial dysfunction, pro-inflammatory effect, and oxidative stress. Obtained results suggest the NEVKP method's beneficial effect on graft function and confirm that SPME chemical biopsy enables low-invasive and repeated sampling of the same tissue, allowing tracking alterations in the graft throughout the entire transplantation procedure.

3.
Anal Bioanal Chem ; 416(9): 2117-2124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246907

RESUMO

Analytical chemistry is a broad area of science comprised of many sub-disciplines. Although each sub-discipline has its own dominant trends, one trend is common to all of them: greenness and sustainability. Efforts to develop more ecological and environmentally friendly methods have been ongoing for over a decade with initial attempts largely focusing on limiting the necessary volume of solvents required and eliminating the use of toxic solvents. Over time, the miniaturization of analytical devices gained popularity as a way of not only reducing chemical usage, but also enabling analyses using smaller sample volumes and more "remote" applications (e.g., on-site sampling and analysis). Of course, miniaturization poses numerous challenges for researchers, for instance, in relation to the method's sensitivity and reproducibility. Developments in the design of detection systems have largely helped to mitigate these issues, but they also often restrict the potential for on-site analysis. Therefore, attempts have been made to improve analysis throughout the entire analytical process, from sampling through sample preparation and instrumental analysis to data handling. Furthermore, clinical chemistry labs must adhere to certain regulations and use certified protocols and materials, which precludes the rapid implementation of solutions developed in research labs. What are the obstacles in translating such innovations to practical applications, and what inventions can make a difference in the future? The answers to these two questions define the trends in analytical chemistry in the field of medical analysis.


Assuntos
Objetivos , Reprodutibilidade dos Testes , Solventes , Miniaturização
4.
Transl Res ; 267: 79-90, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38052298

RESUMO

Transplant centers are currently facing a lack of tools to ensure adequate evaluation of the quality of the available organs, as well as a significant shortage of kidney donors. Therefore, efforts are being made to facilitate the effective use of available organs and expand the donor pool, particularly with expanded criteria donors. Fulfilling a need, we aim to present an innovative analytical method based on solid-phase microextraction (SPME) - chemical biopsy. In order to track changes affecting the organ throughout the entire transplant procedure, porcine kidneys were subjected to multiple samplings at various time points. The application of small-diameter SPME probes assured the minimal invasiveness of the procedure. Porcine model kidney autotransplantation was executed for the purpose of simulating two types of donor scenarios: donors with a beating heart (HBD) and donors after cardiac death (DCD). All renal grafts were exposed to continuous normothermic ex vivo perfusion. Following metabolomic and lipidomic profiling using high-performance liquid chromatography coupled to a mass spectrometer, we observed differences in the profiles of HBD and DCD kidneys. The alterations were predominantly related to energy and glucose metabolism, and differences in the levels of essential amino acids, purine nucleosides, lysophosphocholines, phosphoethanolamines, and triacylglycerols were noticed. Our results indicate the potential of implementing chemical biopsy in the evaluation of graft quality and monitoring of renal function during perfusion.


Assuntos
Rim , Lipidômica , Suínos , Animais , Humanos , Doadores de Tecidos , Morte , Perfusão/métodos , Sobrevivência de Enxerto
5.
J Pharm Anal ; 13(10): 1195-1204, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38024854

RESUMO

In vivo lung perfusion (IVLP) is a novel isolated lung technique developed to enable the local, in situ administration of high-dose chemotherapy to treat metastatic lung cancer. Combination therapy using folinic acid (FOL), 5-fluorouracil (F), and oxaliplatin (OX) (FOLFOX) is routinely employed to treat several types of solid tumours in various tissues. However, F is characterized by large interpatient variability with respect to plasma concentration, which necessitates close monitoring during treatments using of this compound. Since plasma drug concentrations often do not reflect tissue drug concentrations, it is essential to utilize sample-preparation methods specifically suited to monitoring drug levels in target organs. In this work, in vivo solid-phase microextraction (in vivo SPME) is proposed as an effective tool for quantitative therapeutic drug monitoring of FOLFOX in porcine lungs during pre-clinical IVLP and intravenous (IV) trials. The concomitant extraction of other endogenous and exogenous small molecules from the lung and their detection via liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) enabled an assessment of FOLFOX's impact on the metabolomic profile of the lung and revealed the metabolic pathways associated with the route of administration (IVLP vs. IV) and the therapy itself. This study also shows that the immediate instrumental analysis of metabolomic samples is ideal, as long-term storage at -80 °C results in changes in the metabolite content in the sample extracts.

6.
Metabolomics ; 19(4): 40, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043024

RESUMO

INTRODUCTION: The endocannabinoid system consists of different types of receptors, enzymes and endocannabinoids (ECs), which are involved in several physiological processes, but also play important role in the development and progression of central nervous system disorders. OBJECTIVES: The purpose of this study was to apply precise and sensitive methodology for monitoring of four ECs, namely anandamide (AEA), 2-arachidonoyl glycerol (2-AG), N-arachidonoyl dopamine (NADA), 2-arachidonyl glyceryl ether (2-AGe) in selected brain regions of female and male rats at different stages of development (young, adult and old). METHODS: Biocompatible solid-phase microextraction (SPME) probes were introduced into the intact (non-homogenized) brain structures for isolation of four ECs, and the extracts were subjected to LC-MS/MS analysis. Two chemometric approaches, namely hierarchical cluster analysis (HCA) and Principal Component Analysis (PCA) were applied to provide more information about the levels of 2-AG and AEA in different brain structures. RESULTS: 2-AG and AEA were extracted and could be quantified in each brain region; the level of 2-AG was significantly higher in comparison to the level of AEA. Two highly unstable ECs, NADA and 2-AGe, were captured by SPME probes from intact brain samples for the first time. CONCLUSION: SPME probes were able to isolate highly unstable endogenous compounds from intact tissue, and provided new tools for precise analysis of the level and distribution of ECs in different brain regions. Monitoring of ECs in brain samples is important not only in physiological conditions, but also may contribute to better understanding of the functioning of the endocannabinoid system in various disorders.


Assuntos
Endocanabinoides , Microextração em Fase Sólida , Masculino , Ratos , Feminino , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Metabolômica , Encéfalo
7.
Acta Neurochir (Wien) ; 165(7): 1739-1748, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37067618

RESUMO

BACKGROUND: The current literature on meningioma reveals a gap in knowledge regarding the impact of genetic factors on patient survival. Furthermore, there is a lack of data on the relationship between the perioperative use of corticosteroids and patient survival in meningioma patients. Our study aims to overcome these gaps by investigating the correlation between genetic factors and overall survival and the effect of postoperative corticosteroids and other clinical characteristics on patient outcomes in meningioma patients. METHODS: A retrospective analysis of the medical records of 85 newly diagnosed meningioma patients treated from 2016 to 2017 with follow-up until December 2022 was performed. RESULTS: NF2 mutations occurred in 60% of tumors, AKT1 mutations in 8.2%, and TRAF7 mutations in 3.6%. Most tumors in the parasagittal region had the NF2 mutation. On the other hand, almost all tumors in the sphenoid ridge area did not have the NF2 mutation. AKT-1-mutated meningiomas had more frequent peritumoral edema. Patients who received steroids perioperatively had worse overall survival (OS) than those without steroids (p = 0.034). Moreover, preoperative peri-meningioma edema also was associated with worse OS (p < 0.003). Contrarily, NF2 mutations did not influence survival. CONCLUSIONS: The combination of clinical, pathomorphological, and genetic data allows us to characterize the tumor better and assess its prognosis. Corticosteroids perioperatively and peri-meningioma edema were associated with shorter OS, according to our study. Glucocorticoids should be used judiciously for the shortest time required to achieve symptomatic relief.


Assuntos
Neoplasias Meníngeas , Meningioma , Esteroides , Humanos , Corticosteroides , Fator 4 Semelhante a Kruppel , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/cirurgia , Neoplasias Meníngeas/patologia , Meningioma/tratamento farmacológico , Meningioma/genética , Meningioma/cirurgia , Mutação , Estudos Retrospectivos , Esteroides/uso terapêutico
8.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768452

RESUMO

The development of surgical techniques, immunosuppressive strategies and new organ preservation methods have meant that transplant centers have to face the problem of an insufficient number of organs for transplantation concerning the constantly growing demand. Therefore, using organs from expanded criteria donors and developing new analytical solutions to find parameters or compounds that would allow a more efficient assessment of organ quality before transplantation are options for meeting this challenge. This study proposed bile metabolomic analysis to evaluate liver metabolism and biliary tract function depending on the organ preservation method and degree of warm ischemia time. The analyses were performed on solid-phase microextraction-prepared bile samples from porcine model donors with mild (heart beating donor [HBD]) and moderate warm ischemia (donation after circulatory death [DCD]) grafts subjected to static cold storage (SCS) or normothermic ex vivo liver perfusion (NEVLP) before transplantation. Bile produced in the SCS-preserved livers was characterized by increased levels of metabolites such as chenodeoxycholic acid, arachidonic acid and 5S-hydroxyeicosatetraeonic acid, as well as saturated and monounsaturated lysophosphatidylcholines (LPC). Such changes may be associated with differences in the bile acid synthesis pathways and organ inflammation. Moreover, it has been shown that NEVLP reduced the negative effect of ischemia on organ function. A linear relationship was observed between levels of lipids from the LPC group and the time of organ ischemia. This study identified metabolites worth considering as potential markers of changes occurring in preserved grafts.


Assuntos
Sistema Biliar , Transplante de Fígado , Traumatismo por Reperfusão , Suínos , Animais , Preservação de Órgãos/métodos , Transplante de Fígado/métodos , Traumatismo por Reperfusão/metabolismo , Perfusão/métodos , Sistema Biliar/metabolismo , Fígado/metabolismo , Isquemia/metabolismo , Isquemia Quente , Metaboloma
9.
Front Mol Biosci ; 9: 1019290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330222

RESUMO

Currently used methods for diagnosing ventilator-associated pneumonia (VAP) are complex, time-consuming and require invasive procedures while empirical antibacterial therapy applies broad spectrum antibiotics that may promote antimicrobial resistance. Hence, novel and fast methods based on alternative markers are needed for VAP detection and differentiation of causative pathogens. Pathogenic bacteria produce a broad range of volatile organic compounds (VOCs), some of which may potentially serve as biomarkers for microorganism identification. Additionally, monitoring of dynamically changing VOCs concentration profiles may indicate emerging pneumonia and allow timely implementation of appropriate antimicrobial treatment. This study substantially extends the knowledge on bacterial metabolites providing the unambiguous identification of volatile metabolites produced by carbapenem-resistant and susceptible strains of Klebsiella pneumoniae (confirmed with pure standards in addition to mass spectra match) but also revealing their temporary concentration profiles (along the course of pathogen proliferation) and dependence on the addition of antibiotic (imipenem) to bacteria. Furthermore, the clinical strains of K. pneumoniae isolated from bronchoalveolar lavage specimens collected from mechanically ventilated patients were investigated to reveal, whether bacterial metabolites observed in model experiments with reference strains could be relevant for wild pathogens as well. In all experiments, the headspace samples from bacteria cultures were collected on multibed sorption tubes and analyzed by GC-MS. Sampling was done under strictly controlled conditions at seven time points (up to 24 h after bacteria inoculation) to follow the dynamic changes in VOC concentrations, revealing three profiles: release proportional to bacteria load, temporary maximum and uptake. Altogether 32 VOCs were released by susceptible and 25 VOCs by resistant strain, amongst which 2-pentanone, 2-heptanone, and 2-nonanone were significantly higher for carbapenem-resistant KPN. Considerably more metabolites (n = 64) were produced by clinical isolates and in higher diversity compared to reference KPN strains.

10.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291824

RESUMO

In addition to being the most common primary brain tumor, gliomas are also among the most difficult to diagnose and treat. At present, the "gold standard" in glioma treatment entails the surgical resection of the largest possible portion of the tumor, followed by temozolomide therapy and radiation. However, this approach does not always yield the desired results. Additionally, the ability to cross the blood-brain barrier remains a major challenge for new potential drugs. Thus, researchers continue to search for targeted therapies that can be individualized based on the specific characteristics of each case. Metabolic and lipidomic research may represent two of the best ways to achieve this goal, as they enable detailed insights into the changes in the profile of small molecules in a biological system/specimen. This article reviews the new approaches to glioma therapy based on the analysis of alterations to biochemical pathways, and it provides an overview of the clinical results that may support personalized therapies in the future.

11.
J Pharm Anal ; 12(4): 590-600, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36105172

RESUMO

Normothermic ex vivo lung perfusion (NEVLP) has emerged as a modernized organ preservation technique that allows for detailed assessment of donor lung function prior to transplantation. The main goal of this study was to identify potential biomarkers of lung function and/or injury during a prolonged (19 h) NEVLP procedure using in vivo solid-phase microextraction (SPME) technology followed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). The use of minimally invasive in vivo SPME fibers for repeated sampling of biological tissue permits the monitoring and evaluation of biochemical changes and alterations in the metabolomic profile of the lung. These in vivo SPME fibers were directly introduced into the lung and were also used to extract metabolites (on-site SPME) from fresh perfusate samples collected alongside lung samplings. A subsequent goal of the study was to assess the feasibility of SPME as an in vivo method in metabolomics studies, in comparison to the traditional in-lab metabolomics workflow. Several upregulated biochemical pathways involved in pro- and anti-inflammatory responses, as well as lipid metabolism, were observed during extended lung perfusion, especially between the 11th and 12th hours of the procedure, in both lung and perfusate samples. However, several unstable and/or short-lived metabolites, such as neuroprostanes, have been extracted from lung tissue in vivo using SPME fibers. On-site monitoring of the metabolomic profiles of both lung tissues through in vivo SPME and perfusate samples on site throughout the prolonged NEVLP procedure can be effectively performed using in vivo SPME technology.

12.
Metabolites ; 12(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35629882

RESUMO

Frailty is a geriatric syndrome causing a reduction in the body's functional reserves. Proper nutrition may be helpful in delaying transitioning older adults from pre-frail to frailty syndrome. The present study evaluates the nutritional status of pre-frail patients who underwent nutritional intervention and metabolomic changes resulting from this intervention. Sixteen pre-frail patients (68.4 ± 5.5 years old; 81.3% women) were enrolled for nutritional intervention, and twenty-nine robust elderly people (69.3 ± 5.3 years old; 82.8% women) were the control group. Pre-frail patients consumed 1.0 g protein/kg BW/day for eight weeks through diet modification and an additional daily intake of a protein powder formula. Taken measurements included: Nutritional anthropometry, assessment of food intake, and blood serum analysis with an untargeted metabolomic assessment. Protein consumption increased by 25.8%; moreover, significant increases in body weight (+1.2 kg; p = 0.023) and muscle mass index (+0.1 kg/m2; p = 0.042) were also observed. The untargeted metabolomic assay showed a significant increase in arachidonic acid (p = 0.038), and valine (p = 0.008) among pre-frail patients. Increased protein consumption is reflected in improved anthropometric and biochemical parameters of pre-frail patients. Moreover, metabolomic assay can be a useful tool in determining compliance with dietary recommendations.

13.
Anal Bioanal Chem ; 414(24): 7005-7013, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35606454

RESUMO

Solid-phase microextraction (SPME) possesses unique features that allow it to be used in analyses that would not be possible with traditional sample-preparation methods. The simplicity of SPME protocols and extraction devices makes it a uniform platform for analyzing biological samples, either via the headspace or in direct immersion mode. Furthermore, flexible probe design enables SPME to be applied to target objects of different sizes, offering analysis on a scale ranging "from single cell to living organs". SPME microfibers are minimally invasive, which enables them to be applied for the spatial and temporal monitoring of target analytes or to assess changes in the entire metabolome or lipidome. Furthermore, SPME permits the capture of the elusive portion of the metabolome, thus complementing exhaustive methods that are biased towards highly abundant and stable species. Significantly, SPME can be interfaced with analytical instrumentation to create a rapid diagnostic tool. However, despite these advantages, SPME has some limitations that must be well-understood and addressed. This paper presents examples of up-to-date applications of SPME, challenges related to particular studies, and future perspectives regarding the application of SPME in biomedical analysis.


Assuntos
Metaboloma , Microextração em Fase Sólida , Microextração em Fase Sólida/métodos
14.
Molecules ; 27(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408649

RESUMO

Brain tumors are neoplasms with one of the highest mortality rates. Therefore, the availability of methods that allow for the quick and effective diagnosis of brain tumors and selection of appropriate treatments is of critical importance for patient outcomes. In this study, coated blade spray-mass spectrometry (CBS-MS), which combines the features of microextraction and fast ionization methods, was applied for the analysis of brain tumors. In this approach, a sword-shaped probe is coated with a sorptive material to enable the extraction of analytes from biological samples. The analytes are then desorbed using only a few microliters of solvent, followed by the insertion of the CBS device into the interface on the mass spectrometer source. The results of this proof-of-concept experiment confirmed that CBS coupled to high-resolution mass spectrometry (HRMS) enables the rapid differentiation of two histologically different lesions: meningiomas and gliomas. Moreover, quantitative CBS-HRMS/MS analysis of carnitine, the endogenous compound, previously identified as a discriminating metabolite, showed good reproducibility with the variation below 10% when using a standard addition calibration strategy and deuterated internal standards for correction. The resultant data show that the proposed CBS-MS technique can be useful for on-site qualitative and quantitative assessments of brain tumor metabolite profiles.


Assuntos
Neoplasias Encefálicas , Espectrometria de Massas em Tandem , Neoplasias Encefálicas/diagnóstico , Humanos , Reprodutibilidade dos Testes , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos
15.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408879

RESUMO

The development of a fast and accurate intraoperative method that enables the differentiation and stratification of cancerous lesions is still a challenging problem in laboratory medicine. Therefore, it is important to find and optimize a simple and effective analytical method of enabling the selection of distinctive metabolites. This study aims to assess the usefulness of solid-phase microextraction (SPME) probes as a sampling method for the lipidomic analysis of brain tumors. To this end, SPME was applied to sample brain tumors immediately after excision, followed by lipidomic analysis via liquid chromatography-high resolution mass spectrometry (LC-HRMS). The results showed that long fibers were a good option for extracting analytes from an entire lesion to obtain an average lipidomic profile. Moreover, significant differences between tumors of different histological origin were observed. In-depth investigation of the glioma samples revealed that malignancy grade and isocitrate dehydrogenase (IDH) mutation status impact the lipidomic composition of the tumor, whereas 1p/19q co-deletion did not appear to alter the lipid profile. This first on-site lipidomic analysis of intact tumors proved that chemical biopsy with SPME is a promising tool for the simple and fast extraction of lipid markers in neurooncology.


Assuntos
Neoplasias Encefálicas , Lipidômica , Biópsia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Humanos , Isocitrato Desidrogenase/genética , Lipídeos , Mutação
16.
Molecules ; 27(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335335

RESUMO

In this study, a series of 10 novel 1-methyl-3-octyloxymethylimidazolium derivatives carrying various anionic moieties (4-hydroxybenzenesulfonate, benzenesulfonate, carvacroloxyacetate, chloride, formate, propionate, thymoloxyacetate, vanillinoxyacetate, eugenoloxyacetate and trimethylacetate) were synthesized. Compounds were tested for their antimicrobial activity against six microbe strains (Staph-ylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Enterococcus faecalis, and Candida albicans), cytotoxic activity against the mouse melanoma cell line (B16 F10), and surface active properties. All synthesized compounds exhibited antimicrobial activity (expressed as minimum inhibitory concentration; in range of 0.10-27.82 mM/L), especially against Gram-positive bacteria and fungi. In addition, all compounds demonstrated cytotoxicity on B16 F10 cells (IC50 values 0.0101-0.0197 mM/L). Surface properties defined as CMC values, ranged from 0.72 to 32.35 mmol L-1. The obtained results provide an insight into the promising activity of a novel group of quaternary imidazolium derivatives having ionic liquid properties. The most potent compounds, containing a thymoloxyacetate and eugenoloxyacetate moiety, could be candidates for new antimicrobial agents or surfactants.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Animais , Anti-Infecciosos/farmacologia , Candida albicans , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Líquidos Iônicos/farmacologia , Camundongos
17.
J Clin Med ; 11(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159939

RESUMO

The number of patients placed on kidney transplant waiting lists is rapidly increasing, resulting in a growing gap between organ demand and the availability of kidneys for transplantation. This organ shortage has forced medical professionals to utilize marginal kidneys from expanded criteria donors (ECD) to broaden the donor pool and shorten wait times for patients with end-stage renal disease. However, recipients of ECD kidney grafts tend to have worse outcomes compared to those receiving organs from standard criteria donors (SCD), specifically increased risks of delayed graft function (DGF) and primary nonfunction incidence. Thus, representative methods for graft-quality assessment are strongly needed, especially for ECDs. Currently, graft-quality evaluation is limited to interpreting the donor's recent laboratory tests, clinical risk scores, the visual evaluation of the organ, and, in some cases, a biopsy and perfusion parameters. The last few years have seen the emergence of many new technologies designed to examine organ function, including new imaging techniques, transcriptomics, genomics, proteomics, metabolomics, lipidomics, and new solutions in organ perfusion, which has enabled a deeper understanding of the complex mechanisms associated with ischemia-reperfusion injury (IRI), inflammatory process, and graft rejection. This review summarizes and assesses the strengths and weaknesses of current conventional diagnostic methods and a wide range of new potential strategies (from the last five years) with respect to donor graft-quality assessment, the identification of IRI, perfusion control, and the prediction of DGF.

18.
Cancers (Basel) ; 14(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35053475

RESUMO

Glioblastoma multiforme is one of the most malignant neoplasms among humans in their third and fourth decades of life, which is evidenced by short patient survival times and rapid tumor-cell proliferation after radiation and chemotherapy. At present, the diagnosis of gliomas and decisions related to therapeutic strategies are based on genetic testing and histological analysis of the tumor, with molecular biomarkers still being sought to complement the diagnostic panel. This work aims to enable the metabolomic characterization of cancer tissue and the discovery of potential biomarkers via high-resolution mass spectrometry coupled to liquid chromatography and a solvent-free sampling protocol that uses a microprobe to extract metabolites directly from intact tumors. The metabolomic analyses were performed independently from genetic and histological testing and at a later time. Despite the small cohort analyzed in this study, the results indicated that the proposed method is able to identify metabolites associated with different malignancy grades of glioma, as well as IDH and 1p19q codeletion mutations. A comparison of the constellation of identified metabolites and the results of standard tests indicated the validity of using the characterization of one comprehensive tumor phenotype as a reflection of all diagnostically meaningful information. Due to its simplicity, the proposed analytical approach was verified as being compatible with a surgical environment and applicable for large-scale studies.

19.
J Pharm Anal ; 11(5): 667-674, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34765281

RESUMO

Solid phase microextraction (SPME) in combination with high-resolution mass spectrometry was employed for the determination of metabolomic profile of mouse melanoma growth within in vitro 2D, in vitro 3D, and in vivo models. Such multi-model approach had never been investigated before. Due to the low-invasiveness of SPME, it was possible to perform time-course analysis, which allowed building time profile of biochemical reactions in the studied material. Such approach does not require the multiplication of samples as subsequent analyses are performed from the very same cell culture or from the same individual. SPME already reduces the number of animals required for experiment; therefore, it is with good concordance with the 3Rs rule (replacement, reduction, and refinement). Among tested models, the largest number of compounds was found within the in vitro 2D cell culture model, while in vivo and in vitro 3D models had the lowest number of detected compounds. These results may be connected with a higher metabolic rate, as well as lower integrity of the in vitro 2D model compared to the in vitro 3D model resulting in a lower number of compounds released into medium in the latter model. In terms of in vitro-in vivo extrapolation, the in vitro 2D model performed more similar to in vivo model compared to in vitro 3D model; however, it might have been due to the fact that only compounds secreted to medium were investigated. Thus, in further experiments to obtain full metabolome information, the intraspheroidal assessment or spheroid dissociation would be necessary.

20.
Metabolites ; 11(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34677419

RESUMO

Volatile organic compounds (VOCs) have been proposed in the last two decades as biomarkers for disease detection and therapeutic monitoring. Model in vitro experiments with established cell lines are fundamental to clarify whether given VOCs originate from normal human cells or pathogens, including transformed cancer cells. Due to the trace concentrations of target metabolites, adsorptive enrichment is needed before gas chromatography-mass spectrometry (GC-MS) analysis, with solid-phase microextraction (SPME) being perfectly suited for this purpose. Here, a modification of SPME, the thin-film microextraction (TFME) technique, is proposed for analysis of cellular VOCs, which utilizes a planar mesh coated with stationary phase to increase the extraction phase volume and active surface area. In this study, four different adsorbents were compared: carboxen, divinylbenzene, hydrophobic-lipophilic balanced and polydimethylsiloxane. Amongst them, HLB sheets using poly(divinylbenzene-co-N-vinyl-pyrrolidone) skeleton structure proved to be the most versatile, enabling the most sensitive analysis of VOCs with a broad polarity and volatility. For HLB, sampling type (internal static headspace, external bi-directional headspace), extraction temperature and extraction time were also examined. An established method was successfully applied to analyze metabolites produced by A549 cells revealing five volatiles at significantly higher (additionally benzaldehyde at lower) levels in cell culture medium compared to the cell-free reference medium headspace.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA