Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nanomaterials (Basel) ; 13(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37887926

RESUMO

This study presents the synthesis and characterization of alginate-based nanocomposite peelable films, reinforced by carbon nanofibers (CNFs) decorated with nanoparticles that possess remarkable antimicrobial properties. These materials are suitable for immediate decontamination applications, being designed as fluid formulations that can be applied on contaminated surfaces, and subsequently, they can rapidly form a peelable film via divalent ion crosslinking and can be easily peeled and disposed of. Silver, copper, and zinc oxide nanoparticles (NPs) were synthesized using superficial oxidized carbon nanofibers (CNF-ox) as support. To obtain the decontaminating formulations, sodium alginate (ALG) was further incorporated into the colloidal solutions containing the antimicrobial nanoparticles. The properties of the initial CNF-ox-NP-ALG solutions and the resulting peelable nanocomposite hydrogels (obtained by crosslinking with zinc acetate) were assessed by rheological measurements, and mechanical investigations, respectively. The evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) for the synthesized nanoparticles (silver, copper, and zinc oxide) was performed. The best values for MIC and MBC were obtained for CNF-ox decorated with AgNPs for both types of bacterial strains: Gram-negative (MIC and MBC values (mg/L): E. coli-3 and 108; P. aeruginosa-3 and 54) and Gram-positive (MIC and MBC values (mg/L): S. aureus-13 and 27). The film-forming decontaminating formulations were also subjected to a microbiology assay consisting of the time-kill test, MIC and MBC estimations, and evaluation of the efficacity of peelable coatings in removing the biological agents from the contaminated surfaces. The best decontamination efficiencies against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa varied between 97.40% and 99.95% when employing silver-decorated CNF-ox in the decontaminating formulations. These results reveal an enhanced antimicrobial activity brought about by the synergistic effect of silver and CNF-ox, coupled with an efficient incorporation of the contaminants inside the peelable films.

2.
Gels ; 8(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36286105

RESUMO

The study and discovery of bioactive compounds and new formulations as potential tools for promoting the repair of dermoepidermal tissue in wound healing is of continuing interest. We have developed a new formulation of amorphous hydrogel based on sodium alginate (NaAlg); type I collagen, isolated by the authors from silver carp tails (COL); glycerol (Gli); Aloe vera gel powder (AV); and silver nanoparticles obtained by green synthesis with aqueous Cinnamomum verum extract (AgNPs@CIN) and vitamin C, respectively. The gel texture of the amorphous hydrogels was achieved by the addition of Aloe vera, demonstrated by a rheological analysis. The evaluations of the cytotoxicity and cell proliferation capacity of the experimental amorphous hydrogels were performed against human foreskin fibroblast Hs27 cells (CRL-1634-ATCC). The developed gel formulations did not show a cytotoxic effect. The hydrogel variant containing AgNPs@CIN in a concentration of 8 µg Ag/gel formulation and hydrogel variant with vitamin C had proliferative activity. In addition, the antibacterial activity of the hydrogels was evaluated against S. aureus ATCC 6538, Ps. aeruginosa ATCC 27853, and E. coli ATCC 25922. The results demonstrated that the gel variant based on AgNPs@CIN in a concentration of 95 µg Ag/gel formulation and the hydrogel based on vitamin C show antibacterial activity. Therefore, the developed hydrogels with AgNPs@CIN and vitamin C could be promising alternatives in wound healing.

3.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36678545

RESUMO

Green chemistry is a pharmaceutical industry tool, which, when implemented correctly, can lead to a minimization in resource consumption and waste. An aqueous extract of Salix alba L. was employed for the efficient and rapid synthesis of silver/gold particle nanostructures via an inexpensive, nontoxic and eco-friendly procedure. The nanoparticles were physicochemically characterized using ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), X-ray diffraction (XRD) and scanning electron microscopy (SEM), with the best stability of up to one year in the solution obtained for silver nanoparticles without any chemical additives. A comparison of the antimicrobial effect of silver/gold nanoparticles and their formulations (hydrogels, ointments, aqueous solutions) showed that both metallic nanoparticles have antibacterial and antibiofilm effects, with silver-based hydrogels having particularly high antibiofilm efficiency. The highest antibacterial and antibiofilm efficacies were obtained against Pseudomonas aeruginosa when using silver nanoparticle hydrogels, with antibiofilm efficacies of over 75% registered. The hydrogels incorporating green nanoparticles displayed a 200% increased bacterial efficiency when compared to the controls and their components. All silver nanoparticle formulations were ecologically obtained by "green synthesis" and were shown to have an antimicrobial effect or potential as keratinocyte-acting pharmaceutical substances for ameliorating infectious psoriasis wounds.

4.
Biophys Chem ; 279: 106691, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34600311

RESUMO

Surface plasmon resonance (SPR) is a label-free, real-time bio-sensing technique with high potential in the diagnostic area, especially when a signal amplification strategy is used to improve the detection limit. We report here a simple method for enhancing the detection limit of bovine serum albumin (BSA), by attaching gold nanorods (AuNRs). AuNRs were obtained by a seedless synthesis technique and characterized using scanning electron microscopy (SEM), UV-VIS spectroscopy, FT-IR spectroscopy and dynamic light scattering (DLS). Finite element method (FEM) simulations were employed to explore the enhancement of the SPR signal by adding AuNRs on the SPR sensor's metallic layer. SPR spectroscopy was used to analyze the changes in the refractive index brought by the immobilization of unconjugated BSA and BSA modified with AuNRs. The results confirmed that the AuNRs conjugated with the protein increase the SPR signal ~ 10 times, leading to a limit of detection of 1.081 × 10-8 M (0.713 µg/mL).


Assuntos
Técnicas Biossensoriais , Nanotubos , Técnicas Biossensoriais/métodos , Ouro/química , Nanotubos/química , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
5.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007844

RESUMO

This study aims to investigate whether ionizing radiation combined with doxorubicin-conjugated iron oxide nanoparticles (NP-DOX) improves the internalization and cytotoxic effects of the nano-carrier-mediated drug delivery in MG-63 human osteosarcoma cells. NP-DOX was designed and synthesized using the co-precipitation method. Highly stable and crystalline nanoparticles conjugated with DOX were internalized in MG-63 cells through macropinocytosis and located in the perinuclear area. Higher nanoparticles internalization in MG-63 cells previously exposed to 1 Gy X-rays was correlated with an early accumulation of cells in G2/M, starting at 12 h after treatment. After 48 h, the application of the combined treatment led to higher cytotoxic effects compared to the individual treatment, with a reduction in the metabolic capacity and unrepaired DNA breaks, whilst a low percent of arrested cells, contributing to the commitment of mitotic catastrophe. NP-DOX showed hemocompatibility and no systemic cytotoxicity, nor histopathological alteration of the main organs.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Doxorrubicina/química , Endocitose/efeitos dos fármacos , Endocitose/efeitos da radiação , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Osteossarcoma/patologia , Osteossarcoma/radioterapia , Radiação Ionizante
6.
J Photochem Photobiol B ; 197: 111519, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31228688

RESUMO

Gold nanoparticles of comparable size were synthetized using honey mediated green method (AuNPs@honey) and citrate mediated Turkevich method (AuNPs@citrate). Their colloidal behavior in two cell media DMEM and RPMI, both supplemented with 10% FBS, was systematically investigated with different characterization techniques in order to evidence how the composition of the media influences their stability and the development of protein/NP complex. We revealed the formation of the protein corona which individually covers the nanoparticles in RPMI media, like a dielectric spacer according to UV-Vis spectroscopy, while DMEM promotes more abundant agglomerations, clustering together the nanoparticles, according to TEM investigations. In order to evaluate the biological impact of nanoparticles, B16 melanoma and L929 mouse fibroblasts cells were used to carry out the viability assays. Generally, the L929 cells were more sensitive than B16 cells to the presence of gold nanoparticles. Measurements of cell viability, proliferation and apoptotic activities of B16 cells indicated that the effects induced by AuNPs@honey were slightly similar to those induced by AuNPs@citrate, however, the toxic response improved in the L929 fibroblast cells following the treatment with AuNPs@honey within the same concentration range from 1 µg/ml to 15 µg/ml for 48 h. Results showed that honey mediated synthesis generates nanoparticles with reduced toxicity trends depending on the cell type, concentration of nanoparticles and exposure time toward various biomedical applications.


Assuntos
Citratos/química , Ouro/química , Mel/análise , Nanopartículas Metálicas/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Camundongos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
7.
Sci Rep ; 8(1): 9654, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29942035

RESUMO

The challenge for conformal modification of the ultra-high internal surface of nanoporous silicon was tackled by electrochemical polymerisation of 2,6-dihydroxynaphthalene using cyclic voltammetry or potentiometry and, notably, after the thermal treatment (800 °C, N2, 4 h) an assembly of interconnected networks of graphene strongly adhering to nanoporous silicon matrix resulted. Herein we demonstrate the achievement of an easy scalable technology for solid state supercapacitors on silicon, with excellent electrochemical properties. Accordingly, our symmetric supercapacitors (SSC) showed remarkable performance characteristics, comparable to many of the best high-power and/or high-energy carbon-based supercapacitors, their figures of merit matching under battery-like supercapacitor behaviour. Furthermore, the devices displayed high specific capacity values along with enhanced capacity retention even at ultra-high rates for voltage sweep, 5 V/s, or discharge current density, 100 A/g, respectively. The cycling stability tests performed at relatively high discharge current density of 10 A/g indicated good capacity retention, with a superior performance demonstrated for the electrodes obtained under cyclic voltammetry approach, which may be ascribed on the one hand to a better coverage of the porous silicon substrate and, on the other hand, to an improved resilience of the hybrid electrode to pore clogging.

8.
Molecules ; 22(7)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28657606

RESUMO

Nanotechnology has been successfully used for the fabrication of targeted anti-cancer drug carriers. This study aimed to obtain Fe3O4 nanoparticles functionalized with Gemcitabine to improve the cytotoxic effects of the chemotherapeutic substance on cancer cells. The (un) functionalized magnetite nanoparticles were synthesized using a modified co-precipitation method. The nanoconjugate characterization was performed by XRD, SEM, SAED and HRTEM; the functionalizing of magnetite with anti-tumor substances has been highlighted through TGA. The interaction with biologic media has been studied by means of stability and agglomeration tendency (using DLS and Zeta Potential); also, the release kinetics of the drug in culture media was evaluated. Cytotoxicity of free-Gemcitabine and the obtained nanoconjugate were evaluated on human BT 474 breast ductal carcinoma, HepG2 hepatocellular carcinoma and MG 63 osteosarcoma cells by MTS. In parallel, cellular morphology of these cells were examined through fluorescence microscopy and SEM. The localization of the nanoparticles related to the cells was studied using SEM, EDX and TEM. Hemolysis assay showed no damage of erythrocytes. Additionally, an in vivo biodistribution study was made for tracking where Fe3O4@Gemcitabine traveled in the body of mice. Our results showed that the transport of the drug improves the cytotoxic effects in comparison with the one produced by free Gemcitabine for the BT474 and HepG2 cells. The in vivo biodistribution test proved nanoparticle accumulation in the vital organs, with the exception of spleen, where black-brown deposits have been found. These results indicate that our Gemcitabine-functionalized nanoparticles are a promising targeted system for applications in cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Nanopartículas de Magnetita/química , Antineoplásicos/efeitos adversos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/efeitos adversos , Desoxicitidina/química , Desoxicitidina/farmacologia , Eritrócitos/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Nanotecnologia/métodos , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA