Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Neurol ; 24(1): 111, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575854

RESUMO

BACKGROUND: Rapamycin is an inhibitor of the mechanistic target of rapamycin (mTOR) protein kinase, and preclinical data demonstrate that it is a promising candidate for a general gero- and neuroprotective treatment in humans. Results from mouse models of Alzheimer's disease have shown beneficial effects of rapamycin, including preventing or reversing cognitive deficits, reducing amyloid oligomers and tauopathies and normalizing synaptic plasticity and cerebral glucose uptake. The "Evaluating Rapamycin Treatment in Alzheimer's Disease using Positron Emission Tomography" (ERAP) trial aims to test if these results translate to humans through evaluating the change in cerebral glucose uptake following six months of rapamycin treatment in participants with early-stage Alzheimer's disease. METHODS: ERAP is a six-month-long, single-arm, open-label, phase IIa biomarker-driven study evaluating if the drug rapamycin can be repurposed to treat Alzheimer's disease. Fifteen patients will be included and treated with a weekly dose of 7 mg rapamycin for six months. The primary endpoint will be change in cerebral glucose uptake, measured using [18F]FDG positron emission tomography. Secondary endpoints include changes in cognitive measures, markers in cerebrospinal fluid as well as cerebral blood flow measured using magnetic resonance imaging. As exploratory outcomes, the study will assess change in multiple age-related pathological processes, such as periodontal inflammation, retinal degeneration, bone mineral density loss, atherosclerosis and decreased cardiac function. DISCUSSION: The ERAP study is a clinical trial using in vivo imaging biomarkers to assess the repurposing of rapamycin for the treatment of Alzheimer's disease. If successful, the study would provide a strong rationale for large-scale evaluation of mTOR-inhibitors as a potential disease-modifying treatment in Alzheimer's disease. TRIAL REGISTRATION: ClinicalTrials.gov ID NCT06022068, date of registration 2023-08-30.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Humanos , Envelhecimento , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Ensaios Clínicos Fase II como Assunto , Glucose/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Serina-Treonina Quinases TOR
2.
J Nucl Med ; 64(10): 1588-1593, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37934021

RESUMO

O-GlcNAcylation is thought to play a role in the development of tau pathology in Alzheimer's disease because of its ability to modulate tau's aggregation propensity. O-GlcNAcylation is regulated by 2 enzymes: O-GlcNAc transferase and O-GlcNAcase (OGA). Development of a PET tracer would therefore be an essential tool for developing therapeutic small-molecule inhibitors of OGA, enabling clinical testing of target engagement and dose selection. Methods: A collection of small-molecule compounds was screened for inhibitory activity and high-affinity binding to OGA, as well as favorable PET tracer attributes (multidrug resistance protein 1 efflux, central nervous system PET multiparameter optimization, etc.). Two lead compounds with high affinity and selectivity for OGA were selected for further profiling, including OGA binding to tissue homogenate using a radioligand competition binding assay. In vivo pharmacokinetics were established using a microdosing approach with unlabeled compounds in rats. In vivo imaging studies were performed in rodents and nonhuman primates (NHPs) with 11C-labeled compounds. Results: Two selected candidates, BIO-735 and BIO-578, displayed promising attributes in vitro. After radiolabeling with tritium, [3H]BIO-735 and [3H]BIO-578 binding in rodent brain homogenates demonstrated dissociation constants of 0.6 and 2.3 nM, respectively. Binding was inhibited, concentration-dependently, by homologous compounds and thiamet G, a well-characterized and structurally diverse OGA inhibitor. Imaging studies in rats and NHPs showed both tracers had high uptake in the brain and inhibition of binding to OGA in the presence of a nonradioactive compound. However, only BIO-578 demonstrated reversible binding kinetics within the time frame of a PET study with a 11C-labeled molecule to enable quantification using kinetic modeling. Specificity of tracer uptake was confirmed with a 10 mg/kg blocking dose of thiamet G. Conclusion: We describe the development and testing of 2 11C PET tracers targeting the protein OGA. The lead compound BIO-578 demonstrated high affinity and selectivity for OGA in rodent and human postmortem brain tissue, leading to its further testing in NHPs. NHP PET imaging studies showed that the tracer had excellent brain kinetics, with full inhibition of specific binding by thiamet G. These results suggest that the tracer [11C]BIO-578 is well suited for further characterization in humans.


Assuntos
Encéfalo , beta-N-Acetil-Hexosaminidases , Humanos , Ratos , Animais , Piranos
3.
ACS Chem Neurosci ; 14(14): 2560-2568, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37377046

RESUMO

Imaging O-GlcNAcase OGA by positron emission tomography (PET) could provide information on the pathophysiological pathway of neurodegenerative diseases and important information on drug-target engagement and be helpful in dose selection of therapeutic drugs. Our aim was to develop an efficient synthetic method for labeling BIO-1819578 with carbon-11 using 11CO for evaluation of its potential to measure levels of OGA enzyme in non-human primate (NHP) brain using PET. Radiolabeling was achieved in one-pot via a carbon-11 carbonylation reaction using [11C]CO. The detailed regional brain distribution of [11C]BIO-1819578 binding was evaluated using PET measurements in NHPs. Brain radioactivity was measured for 93 min using a high-resolution PET system, and radiometabolites were measured in monkey plasma using gradient radio HPLC. Radiolabeling of [11C]BIO-1819578 was successfully accomplished, and the product was found to be stable at 1 h after formulation. [11C]BIO-1819578 was characterized in the cynomolgus monkey brain where a high brain uptake was found (7 SUV at 4 min). A pronounced pretreatment effect was found, indicating specific binding to OGA enzyme. Radiolabeling of [11C]BIO-1819578 with [11C]CO was successfully accomplished. [11C]BIO-1819578 binds specifically to OGA enzyme. The results suggest that [11C]BIO-1819578 is a potential radioligand for imaging and for measuring target engagement of OGA in the human brain.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Animais , Macaca fascicularis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Carbono/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Compostos Radiofarmacêuticos/metabolismo
4.
Q J Nucl Med Mol Imaging ; 67(3): 215-222, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35119249

RESUMO

BACKGROUND: Attenuation correction (AC) is an important topic in PET/MRI and particularly challenging after brain tumor surgery, near metal implants, adjacent bone and burr holes. In this study, we evaluated the performance of two MR-driven AC methods, zero-echo-time AC (ZTE-AC) and atlas-AC, in comparison to reference standard CT-AC in patients with surgically treated brain tumors at 11C-methionine PET/MRI. METHODS: This retrospective study investigated seven postoperative patients with neuropathologically confirmed brain tumor at 11C-methionine PET/MRI. Three AC maps - ZTE-AC, atlas-AC and reference standard CT-AC - were generated for each patient. Standardized uptake values (SUV) were obtained at the metal implant, adjacent bone and burr hole. Standard uptake ratio (SUR) SURmetal/mirror, SURbone/mirror and SURburrhole/mirror were then calculated and analyzed with Bland-Altman, Pearson correlation and intraclass correlation reliability. RESULTS: Smaller mean percent bias range (Bland-Altman) was found for ZTE-AC than atlas-AC in all analyses (metal ZTE -0.46 to -0.02, metal atlas -3.57 to -3.26; bone ZTE -4.60 to -2.16, bone atlas -5.25 to -3.81; burr hole ZTE -0.95 to -0.52, burr hole atlas 7.86 to 8.87). Percent SD range (Bland-Altman) was large for both methods in all analyses, with lower absolute values for ZTE-AC (ZTE 7.02-8.49; atlas 11.47-14.83). A very strong correlation (Pearson correlation) was demonstrated for both methods compared to CT-AC (ZTE ρ 0.97-0.99, P<0.001; atlas ρ 0.88-0.91, P≤0.009) with higher absolute values for ZTE. An excellent intraclass correlation coefficient was found across all analyses for ZTE, atlas and CT maps (ICC ≥0.88). CONCLUSIONS: ZTE for MR-driven PET attenuation correction presented a more comparable performance to reference standard CT-AC at the postoperative site. ZTE-AC may serve as a useful diagnostic tool for MR-driven AC in patients with surgically treated brain tumors.


Assuntos
Neoplasias Encefálicas , Imagem Multimodal , Humanos , Radioisótopos de Carbono , Imagem Multimodal/métodos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Metionina , Craniotomia , Racemetionina , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos
5.
BMC Med Imaging ; 20(1): 126, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33238917

RESUMO

BACKGROUND: This study aims to compare proton density weighted magnetic resonance imaging (MRI) zero echo time (ZTE) and head atlas attenuation correction (AC) to the reference standard computed tomography (CT) based AC for 11C-methionine positron emission tomography (PET)/MRI. METHODS: A retrospective cohort of 14 patients with suspected or confirmed brain tumour and 11C-Methionine PET/MRI was included in the study. For each scan, three AC maps were generated: ZTE-AC, atlas-AC and reference standard CT-AC. Maximum and mean standardised uptake values (SUV) were measured in the hotspot, mirror region and frontal cortex. In postoperative patients (n = 8), SUV values were additionally obtained adjacent to the metal implant and mirror region. Standardised uptake ratios (SUR) hotspot/mirror, hotspot/cortex and metal/mirror were then calculated and analysed with Bland-Altman, Pearson correlation and intraclass correlation reliability in the overall group and subgroups. RESULTS: ZTE-AC demonstrated narrower SD and 95% CI (Bland-Altman) than atlas-AC in the hotspot analysis for all groups (ZTE overall ≤ 2.84, - 1.41 to 1.70; metal ≤ 1.67, - 3.00 to 2.20; non-metal ≤ 3.04, - 0.96 to 3.38; Atlas overall ≤ 4.56, - 1.05 to 3.83; metal ≤ 3.87, - 3.81 to 4.64; non-metal ≤ 4.90, - 1.68 to 5.86). The mean bias for both ZTE-AC and atlas-AC was ≤ 2.4% compared to CT-AC. In the metal region analysis, ZTE-AC demonstrated a narrower mean bias range-closer to zero-and narrower SD and 95% CI (ZTE 0.21-0.48, ≤ 2.50, - 1.70 to 2.57; Atlas 0.56-1.54, ≤ 4.01, - 1.81 to 4.89). The mean bias for both ZTE-AC and atlas-AC was within 1.6%. A perfect correlation (Pearson correlation) was found for both ZTE-AC and atlas-AC compared to CT-AC in the hotspot and metal analysis (ZTE ρ 1.00, p < 0.0001; atlas ρ 1.00, p < 0.0001). An almost perfect intraclass correlation coefficient for absolute agreement was found between Atlas-, ZTE and CT maps for maxSUR and meanSUR values in all the analyses (ICC > 0.99). CONCLUSIONS: Both ZTE and atlas-AC showed a good performance against CT-AC in patients with brain tumour.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neuroimagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Atlas como Assunto , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Radioisótopos de Carbono , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Metionina , Pessoa de Meia-Idade , Padrões de Referência , Estudos Retrospectivos
6.
EJNMMI Res ; 10(1): 59, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32495011

RESUMO

BACKGROUND: The radioligand [11C]VC-002 was introduced in a small initial study long ago for imaging of muscarinic acetylcholine receptors (mAChRs) in human lungs using positron emission tomography (PET). The objectives of the present study in control subjects were to advance the methodology for quantification of [11C]VC-002 binding in lung and to examine the reliability using a test-retest paradigm. This work constituted a self-standing preparatory step in a larger clinical trial aiming at estimating mAChR occupancy in the human lungs following inhalation of mAChR antagonists. METHODS: PET measurements using [11C]VC-002 and the GE Discovery 710 PET/CT system were performed in seven control subjects at two separate occasions, 2-19 days apart. One subject discontinued the study after the first measurement. Radioligand binding to mAChRs in lung was quantified using an image-derived arterial input function. The total distribution volume (VT) values were obtained on a regional and voxel-by-voxel basis. Kinetic one-tissue and two-tissue compartment models (1TCM, 2TCM), analysis based on linearization of the compartment models (multilinear Logan) and image analysis by data-driven estimation of parametric images based on compartmental theory (DEPICT) were applied. The test-retest repeatability of VT estimates was evaluated by absolute variability (VAR) and intraclass correlation coefficients (ICCs). RESULTS: The 1TCM was the statistically preferred model for description of [11C]VC-002 binding in the lungs. Low VAR (< 10%) across analysis methods indicated good reliability of the PET measurements. The VT estimates were stable after 60 min. CONCLUSIONS: The kinetic behaviour and good repeatability of [11C]VC-002 as well as the novel lung image analysis methodology support its application in applied studies on drug-induced mAChR receptor occupancy and the pathophysiology of pulmonary disorders. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03097380, registered: 31 March 2017.

7.
Eur J Nucl Med Mol Imaging ; 47(10): 2429-2439, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32140803

RESUMO

PURPOSE: Beta-secretase 1 (BACE1) enzyme is implicated in the pathophysiology of Alzheimer's disease. [18F]PF-06684511 is a positron emission tomography (PET) radioligand for imaging BACE1. Despite favorable brain kinetic properties, the effective dose (ED) of [18F]PF-06684511 estimated in non-human primates was relatively high. This study was therefore designed to evaluate the whole-body distribution, dosimetry, quantification, and test-retest reliability of imaging brain BACE1 with [18F]PF-06684511 in healthy volunteers. METHODS: Five subjects were studied for the dosimetry study. Whole-body PET was performed for 366 min with 4 PET-CT sessions. Estimates of the absorbed radiation dose were calculated using the male adult model. Eight subjects participated in the test-retest study. Brain PET measurements were conducted for 123 min with an interval of 5 to 19 days between test and retest conditions. The total distribution volume (VT) was estimated with one-tissue (1T), two-tissue (2T), compartment model (CM), and graphical analysis. Test-retest variability (TRV) and intraclass correlation coefficient (ICC) of VT were calculated as reliability measures. RESULTS: In the dosimetry study, the highest uptake was found in the liver (25.2 ± 2.3 %ID at 0.5 h) and the largest dose was observed in the pancreas (92.9 ± 52.2 µSv/MBq). The calculated ED was 24.7 ± 0.8 µSv/MBq. In the test-retest study, 2TCM described the time-activity curves well. VT (2TCM) was the highest in the anterior cingulate cortex (6.28 ± 1.09 and 6.85 ± 0.81) and the lowest in the cerebellum (4.23 ± 0.88 and 4.20 ± 0.75). Mean TRV and ICC of VT (2TCM) were 16.5% (12.4-20.5%) and 0.496 (0.291-0.644). CONCLUSION: The ED of [18F]PF-06684511 was similar to other 18F radioligands, allowing repeated PET measurements. 2TCM was the most appropriate quantification method. TRV of VT was similar to other radioligands without a reference region, albeit with lower ICC. These data indicated that [18F]PF-06684511 is a suitable radioligand to measure BACE1 level in the human brain. TRIAL REGISTRATION: EudraCT 2016-001110-19 (registered 2016-08-08).


Assuntos
Secretases da Proteína Precursora do Amiloide , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Ácido Aspártico Endopeptidases , Encéfalo/diagnóstico por imagem , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Radiometria , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Distribuição Tecidual , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA