Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(4): 468, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918498

RESUMO

Urban green spaces (UGS) can help mitigate hydrological impacts of urbanisation and climate change through precipitation infiltration, evapotranspiration and groundwater recharge. However, there is a need to understand how precipitation is partitioned by contrasting vegetation types in order to target UGS management for specific ecosystem services. We monitored, over one growing season, hydrometeorology, soil moisture, sapflux and isotopic variability of soil water under contrasting vegetation (evergreen shrub, evergreen conifer, grassland, larger and smaller deciduous trees), focussed around a 150-m transect of UGS in northern Scotland. We further used the data to develop a one-dimensional model, calibrated to soil moisture observations (KGE's generally > 0.65), to estimate evapotranspiration and groundwater recharge. Our results evidenced clear inter-site differences, with grassland soils experiencing rapid drying at the start of summer, resulting in more fractionated soil water isotopes. Contrastingly, the larger deciduous site saw gradual drying, whilst deeper sandy upslope soils beneath the evergreen shrub drained rapidly. Soils beneath the denser canopied evergreen conifer were overall least responsive to precipitation. Modelled ecohydrological fluxes showed similar diversity, with median evapotranspiration estimates increasing in the order grassland (193 mm) < evergreen shrub (214 mm) < larger deciduous tree (224 mm) < evergreen conifer tree (265 mm). The evergreen shrub had similar estimated median transpiration totals as the larger deciduous tree (155 mm and 128 mm, respectively), though timing of water uptake was different. Median groundwater recharge was greatest beneath grassland (232 mm) and lowest beneath the evergreen conifer (128 mm). The study showed how integrating observational data and simple modelling can quantify heterogeneities in ecohydrological partitioning and help guide UGS management.


Assuntos
Ecossistema , Traqueófitas , Parques Recreativos , Monitoramento Ambiental , Árvores , Solo , Água
2.
Nat Commun ; 10(1): 4321, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541090

RESUMO

The Mesoamerican and Caribbean (MAC) region is characterized by tropical cyclones (TCs), strong El Niño-Southern Oscillation events, and climate variability that bring unique hazards to socio-ecological systems. Here we report the first characterization of the isotopic evolution of a TC (Hurricane Otto, 2016) in the MAC region. We use long-term daily rainfall isotopes from Costa Rica and event-based sampling of Hurricanes Irma and Maria (2017), to underpin the dynamical drivers of TC isotope ratios. During Hurricane Otto, rainfall exhibited a large isotopic range, comparable to the annual isotopic cycle. As Hurricane Otto organized into a Category 3, rapid isotopic depletion coupled with a decrease in d-excess indicates efficient isotopic fractionation within ~200 km SW of the warm core. Our results shed light on key processes governing rainfall isotope ratios in the MAC region during continental and maritime TC tracks, with applications to the interpretation of paleo-hydroclimate across the tropics.

3.
Isotopes Environ Health Stud ; 51(2): 231-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25692981

RESUMO

This study presents a stable isotope hydrology and geochemical analysis in the inland Pacific Northwest (PNW) of the USA. Isotope ratios were used to estimate mean transit times (MTTs) in natural and human-altered watersheds using the FLOWPC program. Isotope ratios in precipitation resulted in a regional meteoric water line of δ(2)H = 7.42·Î´(18)O + 0.88 (n = 316; r(2) = 0.97). Isotope compositions exhibited a strong temperature-dependent seasonality. Despite this seasonal variation, the stream δ(18)O variation was small. A significant regression (τ = 0.11D(-1.09); r(2) = 0.83) between baseflow MTTs and the damping ratio was found. Baseflow MTTs ranged from 0.4 to 0.6 years (human-altered), 0.7 to 1.7 years (mining-altered), and 0.7 to 3.2 years (forested). Greater MTTs were represented by more homogenous aqueous chemistry whereas smaller MTTs resulted in more dynamic compositions. The isotope and geochemical data presented provide a baseline for future hydrological modelling in the inland PNW.


Assuntos
Deutério/análise , Isótopos de Oxigênio/análise , Rios/química , Água/análise , Hidrologia , Idaho , Modelos Teóricos , Estações do Ano , Washington
4.
Environ Manage ; 55(3): 657-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25528594

RESUMO

The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.


Assuntos
Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Rios , Qualidade da Água/normas , Geografia , Humanos , Opinião Pública , Sudeste dos Estados Unidos
5.
Environ Manage ; 51(1): 209-24, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142919

RESUMO

Understanding the best way to allocate limited resources is a constant challenge for water quality improvement efforts. The synoptic approach is a tool for geographic prioritization of these efforts. It uses a benefit-cost framework to calculate indices for functional criteria in subunits (watersheds, counties) of a region and then rank the subunits. The synoptic approach was specifically designed to incorporate best professional judgment in cases where information and resources are limited. To date, the synoptic approach has been applied primarily to local or regional wetland restoration prioritization projects. The goal of this work was to develop a synoptic model for prioritizing watersheds within which suites of agricultural best management practices (BMPs) can be implemented to reduce sediment load at the watershed outlets. The model ranks candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most sediment load reduction per conservation dollar invested. The model can be applied anywhere and at many scales provided that the selected suite of BMPs is appropriate for the evaluation area's biophysical and climatic conditions. The model was specifically developed as a tool for prioritizing BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS conservation effects assessment project (CEAP). This paper presents the testing of the model in the little river experimental watershed (LREW) which is located near Tifton, Georgia, USA and is the CEAP watershed representing the southeastern coastal plain. The application of the model to the LREW demonstrated that the model represents the physical drivers of erosion and sediment loading well. The application also showed that the model is quite responsive to social and economic drivers and is, therefore, best applied at a scale large enough to ensure differences in social and economic drivers across the candidate watersheds. The prioritization model will be used for planning purposes. Its results are visualized as maps which enable resource managers to identify watersheds within which BMP implementation would result in the most water quality improvement per conservation dollar invested.


Assuntos
Sedimentos Geológicos/análise , Modelos Teóricos , Conservação dos Recursos Naturais , Monitoramento Ambiental
6.
Sci China C Life Sci ; 48 Suppl 1: 118-27, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16089337

RESUMO

Four sites located in the north-eastern region of the United States of America have been chosen to investigate the impacts of soil heterogeneity in the transport of solutes (bromide and chloride) through the vadose zone (the zone in the soil that lies below the root zone and above the permanent saturated groundwater). A recently proposed mathematical model based on the cumulative beta distribution has been deployed to compare and contrast the regions' heterogeneity from multiple sample percolation experiments. Significant differences in patterns of solute leaching were observed even over a small spatial scale, indicating that traditional sampling methods for solute transport, for example the gravity pan or suction lysimeters, or more recent inventions such as the multiple sample percolation systems may not be effective in estimating solute fluxes in soils when a significant degree of soil heterogeneity is present. Consequently, ignoring soil heterogeneity in solute transport studies will likely result in under- or overprediction of leached fluxes and potentially lead to serious pollution of soils and/or groundwater. The cumulative beta distribution technique is found to be a versatile and simple technique of gaining valuable information regarding soil heterogeneity effects on solute transport. It is also an excellent tool for guiding future decisions of experimental designs particularly in regard to the number of samples within one site and the number of sampling locations between sites required to obtain a representative estimate of field solute or drainage flux.


Assuntos
Poluentes do Solo/análise , Solo/análise , Poluentes da Água/análise , Brometos/análise , Cloretos/análise , Delaware , Modelos Teóricos , New York , Movimentos da Água
7.
J Environ Qual ; 32(1): 296-304, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12549569

RESUMO

Transport of Cryptosporidium parvum oocysts and Giardia lamblia cysts in the aquatic environment is poorly understood. Information about their transport is essential for actual risk assessment and development of effective control practices. Several studies have suggested that attachment to soil particles is not likely to occur, but the hypothesis has not been well tested, partly because enumeration of C. parvum oocysts or G. lamblia cysts [written as (oo)cysts] in the presence of soil has been difficult. In this paper, a combination of flow cytometry, and epifluorescence and confocal microscopy was successfully used to enumerate (oo)cysts in the presence of soil and determine whether (oo)cysts travel freely in water or attached to soil particles. The maximum soil concentration in water samples for reliable enumeration of (oo)cysts was 2 mg/L. Particle attachment experiments detected attached pairs of oppositely charged beads and (oo)cysts, while no attachment was observed between like charged beads, (oo)cysts, and soil particles. These results support the hypothesis that electrostatic forces govern the interaction between (oo)cysts and soil particles. Batch experiments further confirmed the null hypothesis (p > 0.05) that (oo)cysts do not attach to natural soil particles. These findings suggest that, when (oo)cysts have been entrained in overland flow (i.e., runoff), they will travel freely in the water and not as part of the particulate sediment load.


Assuntos
Cryptosporidium parvum/fisiologia , Giardia lamblia/fisiologia , Oocistos/fisiologia , Animais , Cryptosporidium parvum/isolamento & purificação , Monitoramento Ambiental , Giardia lamblia/isolamento & purificação , Tamanho da Partícula , Chuva , Medição de Risco , Solo , Eletricidade Estática , Microbiologia da Água , Movimentos da Água
8.
J Environ Qual ; 23(5): 1058-1064, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34872213

RESUMO

The transport of pesticides and other chemicals through macropores has been widely observed and predicting it is a challenge. This article considers a simplified two-layer model, similar to overland flow models in which the processes of adsorption and desorption are separated. For the layer near the surface, or the mixing layer, the solute concentration in the layer is equal to that in the percolating water (including preferentially moving water). In the lower profile, the flow is partitioned between matrix and preferential flow. The solute concentration of the matrix flow is characterized by the soil condition near the outlet point, whereas the preferential flow is represented by the solute concentration in the mixing layer. The closed form equation, exhibiting exponentially decreasing macropore flow solute concentrations, is tested against solute breakthrough curves using three independent sets of experimental data. The predicted depths of mixing between 5 and 25 cm are physically realistic and the closed form is shown to reproduce the form of experimental data, particularly under conditions of significant macropore flow. Although highly simplified, the physically based model yields a framework for predicting solute concentration for preferentially moving water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA