Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1278608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965003

RESUMO

Climate change is one of the biggest threats that human society currently needs to face. Heat waves associated with global warming negatively affect plant growth and development and will increase in intensity and frequency in the coming years. Tomato is one of the most produced and consumed fruit in the world but remarkable yield losses occur every year due to the sensitivity of many cultivars to heat stress (HS). New insights into how tomato plants are responding to HS will contribute to the development of cultivars with high yields under harsh temperature conditions. In this study, the analysis of microsporogenesis and pollen germination rate of eleven tomato cultivars after exposure to a chronic HS revealed differences between genotypes. Pollen development was either delayed and/or desynchronized by HS depending on the cultivar considered. In addition, except for two, pollen germination was abolished by HS in all cultivars. The transcriptome of floral buds at two developmental stages (tetrad and pollen floral buds) of five cultivars revealed common and specific molecular responses implemented by tomato cultivars to cope with chronic HS. These data provide valuable insights into the diversity of the genetic response of floral buds from different cultivars to HS and may contribute to the development of future climate resilient tomato varieties.

2.
Plant Signal Behav ; 13(6): e1473687, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29944450

RESUMO

The INHIBITOR OF MERISTEM ACTIVITY in tomato (SlIMA) and MINI ZINC FINGER 2 in Arabidopsis (AtMIF2), two members of the MINI ZINC FINGER family (MIF), are involved in the regulation of flower and ovule development. MIF proteins possess a unique non-canonical zinc-finger domain that confers the capacity to interact with other protein partners. The characterization of SlIMA and AtMIF2 gain- and loss-of-function transgenic lines in Solanum lycopersicum and Arabidopsis thaliana respectively, allowed the demonstration of their conserved functional role in the termination of floral stem cell maintenance. During early floral development, the expression of SlIMA and AtMIF2 is induced by the MADS-Box transcription factor AGAMOUS (AG). Then, SlIMA or AtMIF2 protein recruits the C2H2 zinc finger KNUCKLES (KNU), in a transcriptional repressor complex together with TOPLESS (TPL) and HISTONE DEACETYLASE19 (HDA19). This complex binds to the WUSCHEL (WUS) locus leading to its repression. To further characterize the role of these interactions in flower development, we have investigated the effects of a dominant negative form of SlIMA, SlIMAch that leads to spectacular phenotypes, including ovule conversion into a floral meristem.


Assuntos
Flores/metabolismo , Óvulo Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Meristema/genética , Meristema/metabolismo , Óvulo Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA