Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(21)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37947647

RESUMO

The effects of high-intensity light on the pigment content, photosynthetic rate, and fluorescence parameters of photosystem II in high-pigment tomato mutants (hp 3005) and low-pigment mutants (lp 3617) were investigated. This study also evaluated the dry weight percentage of low molecular weight antioxidant capacity, expression patterns of some photoreceptor-regulated genes, and structural aspects of leaf mesophyll cells. The 3005 mutant displayed increased levels of photosynthetic pigments and anthocyanins, whereas the 3617 mutant demonstrated a heightened content of ultraviolet-absorbing pigments. The photosynthetic rate, photosystem II activity, antioxidant capacity, and carotenoid content were most pronounced in the high-pigment mutant after 72 h exposure to intense light. This mutant also exhibited an increase in leaf thickness and water content when exposed to high-intensity light, suggesting superior physiological adaptability and reduced photoinhibition. Our findings indicate that the enhanced adaptability of the high-pigment mutant might be attributed to increased flavonoid and carotenoid contents, leading to augmented expression of key genes associated with pigment synthesis and light regulation.


Assuntos
Carotenoides , Solanum lycopersicum , Carotenoides/metabolismo , Antocianinas/metabolismo , Solanum lycopersicum/genética , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/genética , Antioxidantes/metabolismo
2.
Plants (Basel) ; 12(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37447113

RESUMO

The aim of this study was to investigate the effect of light quality (white fluorescent light, WFL, containing UV components), red light (RL, 660 nm), blue light (BL, 450 nm), and white LED light (WL, 450 + 580 nm) on the components of the cellular antioxidant system in Pinus sylvestris L. in needles, roots, and hypocotyls, focusing on the accumulation of key secondary metabolites and the expression of related genes. The qualitative and quantitative composition of carotenoids; the content of the main photosynthetic pigments, phenolic compounds, flavonoids (catechins, proanthocyanidins, anthocyanins), ascorbate, and glutathione; the activity of the main antioxidant enzymes; the content of hydrogen peroxide; and the intensity of lipid peroxidation (MDA and 4-HNE contents) were determined. RL resulted in an increase in the content of hydrogen peroxide and 4-HNE, as well as the total fraction of flavonoids in the needles. It also enhanced the expression of several PR (pathogen-related) genes compared to BL and WL. WFL increased the content of phenols, including flavonoids, and enhanced the overall activity of low-molecular antioxidants in needles and hypocotyls. BL increased the content of ascorbate and glutathione, including reduced glutathione, in the needles and simultaneously decreased the activity of peroxidases. Thus, by modifying the light quality, it is possible to regulate the accumulation of secondary metabolites in pine roots and needles, thereby influencing their resistance to various biotic and abiotic stressors.

3.
Foods ; 12(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107510

RESUMO

Environmental factors, such as light of different spectral compositions and temperature, can change the level of activated photoreceptors which, in turn, can affect the biosynthesis of secondary metabolites in the cells of green fruit. By briefly irradiating the harvested fruit of Capsicum annuum L. hot peppers with red light (RL, maximum 660 nm) and far-red light (FRL, maximum 730 nm) and by keeping them at a low temperature, we attempted to determine whether the state of phytochromes in fruit affects the biosynthesis of secondary metabolites. Using HPLC, we analysed the qualitative composition and quantitative content of the main carotenoids and alkaloids and the chlorophylls and ascorbate, in pepper fruit exposed to the above factors. We measured the parameters characterising the primary photochemical processes of photosynthesis and the transcript levels of genes encoding capsaicin biosynthesis enzymes. The total carotenoids content in the fruit increased most noticeably after 24 h of RL irradiation (more than 3.5 times compared to the initial value), and the most significant change in the composition of carotenoids occurred when the fruit was irradiated with FRL for 72 h. The capsaicin alkaloid content increased markedly after 72 h of FRL irradiation (more than 8 times compared to the initial value). It was suggested that decrease in the activity of phytochromes due to a low temperature or FRL may result in an increase in the expression of the PAL and CAM genes.

4.
Biochemistry (Mosc) ; 87(10): 1159-1168, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273884

RESUMO

It was established that in a heterogeneous model system, which consisted of two types of complexes: reaction center or core complex of photosystem 2 of higher plants and LH2 complex of the sulfur bacterium Alc. vinosum, BChl850 oxidation of the LH2 complex could be observed under illumination by the light at a wavelength of 662 nm, which is the red absorption band of Chl. It has been shown that this process induces release of singlet oxygen, which is generated in photosystem II complexes and then partially diffuses into LH2 complex, where it oxidizes BChl850. It was established by HPLC that this results in formation of a product of BChl oxidation, 3-acetylchlorophyll. The process of BChl850 oxidation is inhibited by singlet oxygen quenchers (Trolox and Na ascorbate). It is suggested that the LH2 complex from the sulfur bacterium Alc. vinosum could be used to detect generation of singlet oxygen by the chlorophyll containing samples.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Oxigênio Singlete , Complexo de Proteína do Fotossistema II , Enxofre
5.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500552

RESUMO

The effect of singlet oxygen on light-harvesting (LH) complexes has been studied for a number of sulfur (S+) and nonsulfur (S-) photosynthetic bacteria. The visible/near-IR absorption spectra of the standard LH2 complexes (B800-850) of Allochromatium (Alc.) vinosum (S+), Rhodobacter (Rba.) sphaeroides (S-), Rhodoblastus (Rbl.) acidophilus (S-), and Rhodopseudomonas (Rps.) palustris (S-), two types LH2/LH3 (B800-850 and B800-830) of Thiorhodospira (T.) sibirica (S+), and an unusual LH2 complex (B800-827) of Marichromatium (Mch.) purpuratum (S+) or the LH1 complex from Rhodospirillum (Rsp.) rubrum (S-) were measured in aqueous buffer suspensions in the presence of singlet oxygen generated by the illumination of the dye Rose Bengal (RB). The content of carotenoids in the samples was determined using HPLC analysis. The LH2 complex of Alc. vinosum and T. sibirica with a reduced content of carotenoids was obtained from cells grown in the presence of diphenylamine (DPA), and LH complexes were obtained from the carotenoidless mutant of Rba. sphaeroides R26.1 and Rps. rubrum G9. We found that LH2 complexes containing a complete set of carotenoids were quite resistant to the destructive action of singlet oxygen in the case of Rba. sphaeroides and Mch. purpuratum. Complexes of other bacteria were much less stable, which can be judged by a strong irreversible decrease in the bacteriochlorophyll (BChl) absorption bands (at 850 or 830 nm, respectively) for sulfur bacteria and absorption bands (at 850 and 800 nm) for nonsulfur bacteria. Simultaneously, we observe the appearance of the oxidized product 3-acetyl-chlorophyll (AcChl) absorbing near 700 nm. Moreover, a decrease in the amount of carotenoids enhanced the spectral stability to the action of singlet oxygen of the LH2 and LH3 complexes from sulfur bacteria and kept it at the same level as in the control samples for carotenoidless mutants of nonsulfur bacteria. These results are discussed in terms of the current hypothesis on the protective functions of carotenoids in bacterial photosynthesis. We suggest that the ability of carotenoids to quench singlet oxygen (well-established in vitro) is not well realized in photosynthetic bacteria. We compared the oxidation of BChl850 in LH2 complexes of sulfur bacteria under the action of singlet oxygen (in the presence of 50 µM RB) or blue light absorbed by carotenoids. These processes are very similar: {[BChl + (RB or carotenoid) + light] + O2} → AcChl. We speculate that carotenoids are capable of generating singlet oxygen when illuminated. The mechanism of this process is not yet clear.


Assuntos
Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Carotenoides/farmacologia , Complexos de Proteínas Captadores de Luz/metabolismo , Oxigênio Singlete/metabolismo , Bactérias/metabolismo , Citoplasma/metabolismo , Luz , Oxirredução/efeitos dos fármacos
6.
Plant Physiol Biochem ; 167: 91-100, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34340026

RESUMO

The relationship between photosynthesis, pigment accumulation, and the expression of key light-regulated genes in Solanum lycopersicum hp-1, hp-2 and hp-1.2 photomorphogenetic mutants under conditions of high-intensity light (2000 µm (photons) m-2s-1) was studied. The hp-2 mutant (LA3006) and the hp-1 mutants (LA4012 and LA3538) are deficient in DET1 (De-etiolated 1 and DDB1 (DNA DAMAGE-BINDING PROTEIN 1), respectively, which are components of the CDD complex (COP10, DDB1, DET1). HP mutants are superproducers of various pigments and are sensitive to light. We have shown that HIL (high-intensity light) causes a decrease in PSII activity after 24 and 72 h of irradiation, which was partially restored after 72 h in the WT. The photosynthetic rate noticeably decreased only in LA4012 and LA3538 after 24 h of irradiation. After 72 h, the photosynthetic rate decreased in all mutants, with the exception of hp-1.2 LA0279, but the decrease was most noticeable in LA4012, yet significant changes in the respiration rate were absent. The LA0279 mutant was more capable of accumulating anthocyanin in the cells of the subepidermal parenchyma and chlorenchyma, as well as in the cells at the base of large multicellular glandular trichomes and in the mesophyll. Another important difference was the accumulation of increased amounts of antheraxanthin and phenolic compounds in the leaves of LA0279 after 72 h of HIL irradiation. Unlike LA4012, LA3006, LA0279, and LA3538 sowed a significant increase in the expression levels of CHS, HY5, and FLS genes after 24 h, which may be one of the reasons for the higher adaptive potential of those three mutants. In addition to that in LA3538, strong light-induced stress led to an increased level of flavonol synthase (FLS) expression in the LA3006, LA0279, and LA4012 mutants. We hypothesize that the photosynthetic apparatus (PA) of the LA0279 mutant, which is deficient in the DET1 and DDB1 genes, is most adapted to prolonged HIL. Most likely, the resistance of PA mutants to HIL is due to a variety of factors, which, in addition to the redistribution of carotenoids, may include morphological features associated with the accumulation of anthocyanin in the epidermis, subepidermal layer, mesophyll and trichomes of leaves and with an increase in leaf thickness.


Assuntos
Solanum lycopersicum , Carotenoides/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fotossíntese/genética , Pigmentação , Folhas de Planta/metabolismo
7.
J Photochem Photobiol B ; 170: 99-107, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28411470

RESUMO

Spheroidene and spheroidenone from the non-sulfur bacterium Rhodobacter (Rba.) sphaeroides were incorporated into diphenylamine (DPA) LH1-RC and LH2 complexes from sulfur bacteria Allochromatium (Alc.) minutissimum and Ectothiorhodospira (Ect.) haloalkaliphila in which carotenoid (Car) biosynthesis was inhibited by ~95%. A series of biochemical characteristics of the modified LH2 complexes was studied (electrophoretic mobility, absorption and CD spectra, Car composition, Car-to-BChl energy transfer and thermal stability). It was found that the electrophoretic mobility of the complexes with incorporated Cars did not change compared to that of the control and DPA-complexes, indicating the absence of any significant change in the structure of LH complexes upon DPA-treatment and subsequent incorporation of Cars. The analysis of fluorescence excitation spectra of the spheroidene-incorporated LH2 complex (LH2:sph) and the spheroidenone-incorporated LH2 complex (LH2:sph-ne) showed that spheroidene and spheroidenone exhibited relatively low efficiencies of energy transfer to BChl, when incorporated into the LH2 DPA-complexes from Alc. minutissimum and Ect. haloalkaliphila, although, they showed high efficiencies, being in their natural state in the LH2 complexes from Rba. sphaeroides. A significant increase in thermostability observed for the LH2:sph and LH2:sph-ne complexes with respect to the LH2 DPA-complexes indicated that the two incorporated Cars stabilized the structure of the LH2 complexes.


Assuntos
Proteínas de Bactérias/metabolismo , Carotenoides/química , Chromatiaceae/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Bactérias/química , Carotenoides/biossíntese , Carotenoides/farmacologia , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Difenilamina/química , Transferência de Energia/efeitos dos fármacos , Complexos de Proteínas Captadores de Luz/análise , Complexos de Proteínas Captadores de Luz/química , Estabilidade Proteica , Espectrometria de Fluorescência , Temperatura
8.
J Photochem Photobiol B ; 141: 59-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25318018

RESUMO

The processes of recovering colored-carotenoid (Car) biosynthesis in Car-less cells of the purple sulfur bacterium Ectothiorhodospira haloalkaliphila grown with diphenylamine (DPA-cells) have been studied. It has been found that (1) the rate of recovering colored-Car biosynthesis in the lag-phase is far ahead of the growth rate of the cells themselves; (2) several Cars (ζ-carotene, neurosporene etc.) act as intermediates in Car biosynthesis; (3) because filling the "empty" Car pockets in the LH1-RC complexes is faster than in LH2, available spirilloxanthin is preferentially incorporated into the nascent LH1-RC core particles; (4) as a consequence of the resulting lack of spirilloxanthin availability, the biosynthetic intermediates (anhydrorhodovibrin, rhodopin and lycopene) fill the empty nascent LH2 Car pockets. In the present report, we further discuss the process of colored Car incorporation into LH complexes during the recovery of Car biosynthesis in the DPA-cells of Ect.haloalkaliphila.


Assuntos
Carotenoides/biossíntese , Ectothiorhodospira/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Carotenoides/química , Difenilamina/química , Difenilamina/metabolismo , Ectothiorhodospira/crescimento & desenvolvimento , Espectrofotometria , Xantofilas/biossíntese , Xantofilas/química
9.
Photosynth Res ; 98(1-3): 633-41, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18998236

RESUMO

The effects brought about by growing Allochromatium (Alc.) minutissimum in the presence of different concentrations of the carotenoid (Car) biosynthetic inhibitor diphenylamine (DPA) have been investigated. A decrease of Car content (from approximately 70% to >5%) in the membranes was accompanied by an increase of the percentage of (immature) Cars with reduced numbers of conjugated C=C bonds (from neurosporene to phytoene). Based on the obtained results and the analysis of literature data, the conclusion is reached that accumulation of phytoene during inhibition did not occur. Surprisingly, DPA inhibited phytoene synthase instead of phytoene desaturase as generally assumed. The distribution of Cars in peripheral antenna (LH2) complexes and their effect on the stability of LH2 has been investigated using absorption spectroscopy and HPLC analysis. Heterogeneity of Car composition and contents in the LH2 pool is revealed. The Car contents in LH2 varied widely from control levels to complete absence. According to common view, the assembly of LH2 occurs only in the presence of Cars. Here, we show that the LH2 can be assembled without any Cars. The presence of Cars, however, is important for structural stability of LH2 complexes.


Assuntos
Carotenoides/metabolismo , Chromatiaceae/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Membrana Celular/metabolismo , Difenilamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA