Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 128(46): 15005-18, 2006 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17105313

RESUMO

A combined experimental and DFT study of the reactions of the titanium imido methyl cation [Ti(NtBu)(Me3[9]aneN3)Me]+ (4+) with AlMe3 and ZnMe2 is described. Reaction of 4+ with AlMe3 gave [Ti(NtBu)(Me3[9]aneN3)(mu-Me)2AlMe2]+ (7+), the first structurally characterized AlMe3 adduct of a transition metal alkyl cation and a model for the presumed resting state in MAO-activated olefin polymerizations. Reaction of 4+ with ZnMe2 also gave a methyl-bridged heterobinuclear species, namely [Ti(mu-NtBu)(Me3[9]aneN3)(mu-Me)2ZnMe]+ (8+), the first directly observed ZnMe2 adduct of a transition metal alkyl cation. At room temperature, all three metal-bound methyls of 8+ underwent rapid exchange with those of free ZnMe2, whereas at 233 K only the terminal Zn-Me group exchanged significantly. Addition of AlMe3 to 8+ quantitatively formed 7+ and ZnMe2. Reaction of 4+ with Cp2ZrMe2 gave [Ti(NtBu){Me2(mu-CH2)[9]aneN3}(mu-CH2)ZrCp2]+ (10+) via a highly selective double C-H bond activation reaction in which both alkyl groups of Cp2ZrMe2 were lost. DFT calculations on models of 7+ confirmed the approximately square-based pyramidal geometries for the bridging methyl groups. Calculations on 8+ found that the formation of the Ti(mu-Me)2Zn moiety is assisted by an Nimide-->Zn dative bond. DFT calculations for the sterically less encumbered methyl cation [Ti(NMe)(H3[9]aneN3)Me]+ found strong thermodynamic preferences for adducts featuring Nimide-->M (M = Al or Zn) interactions. This offers insight into recently observed structure-productivity trends in MAO-activated imido-based polymerization catalysts. Calculations on the metallocenium adducts [Cp2Ti(mu-Me)2AlMe2]+ and [Cp2Ti(mu-Me)2ZnMe]+ are described, each showing alpha-agostic interactions for the bridging methyl groups. For these systems and the imido ones, the coordination of AlMe3 to the corresponding monomethyl cation is ca. 30 kJ mol-1 more favorable than for ZnMe2.

2.
Chem Commun (Camb) ; (26): 3313-5, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-15983658

RESUMO

The imidotitanium alkyl cations [Ti(NtBu)(Me3[9]aneN3)R]+ (R = Me (3+) or CH2SiMe3(4+)) possess either a very weak alpha-agostic or beta-Si-C agostic interactions, respectively, according to 13C and 29Si NMR and DFT studies; reaction of (4+) with iPrNCNiPr gives totally selective insertion into the Ti-alkyl bond; reaction of 3+ with AlMe3 gives the first structurally characterised AlMe3 adduct of a transition metal alkyl cation (Me3[9]aneN3 = 1,4,7-trimethyltriazacyclononane).

3.
Chem Commun (Camb) ; (4): 434-5, 2004 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-14765245

RESUMO

A family of ca. 50 imidotitanium precatalysts [Ti(NR)(Me(3)[9]aneN(3))Cl(2)](R = alkyl or aryl; Me(3)[9]aneN(3)= 1,4,7-trimethyltriazacyclononane) were prepared in good yields using semi-automated procedures; high-throughput screening techniques identified seven highly active ethylene polymerisation precatalysts with activities in the range ca. 3 400 to 10 000 kg(PE) mol(-1) h(-1) bar(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA