Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neuroscience ; 531: 75-85, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699442

RESUMO

Sensory difficulties represent a crucial issue in the life of autistic individuals. The diagnostic and statistical manual of mental disorders describes both hyper- and hypo-responsiveness to sensory stimulation as a criterion for the diagnosis autism spectrum disorders (ASD). Among the sensory domain affected in ASD, altered responses to tactile stimulation represent the most commonly reported sensory deficits. Although tactile abnormalities have been reported in monogenic cohorts of patients and genetic mouse models of ASD, the underlying mechanisms are still unknown. Traditionally, autism research has focused on the central nervous system as the target to infer the neurobiological bases of such tactile abnormalities. Nonetheless, the peripheral nervous system represents the initial site of processing of sensory information and a potential site of dysfunction in the sensory cascade. Here we investigated the gene expression deregulation in the trigeminal ganglion (which directly receives tactile information from whiskers) in two genetic models of syndromic autism (Shank3b and Cntnap2 mutant mice) at both adult and juvenile ages. We found several neuronal and non-neuronal markers involved in inhibitory, excitatory, neuroinflammatory and sensory neurotransmission to be differentially regulated within the trigeminal ganglia of both adult and juvenile Shank3b and Cntnap2 mutant mice. These results may help in disentangling the multifaced complexity of sensory abnormalities in autism and open avenues for the development of peripherally targeted treatments for tactile sensory deficits exhibited in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Perfilação da Expressão Gênica , Tato/fisiologia , Gânglio Trigeminal
2.
Commun Biol ; 4(1): 1152, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611268

RESUMO

Memory consolidation requires astrocytic microdomains for protein recycling; but whether this lays a mechanistic foundation for long-term information storage remains enigmatic. Here we demonstrate that persistent synaptic strengthening invited astrocytic microdomains to convert initially internalized (pro)-brain-derived neurotrophic factor (proBDNF) into active prodomain (BDNFpro) and mature BDNF (mBDNF) for synaptic re-use. While mBDNF activates TrkB, we uncovered a previously unsuspected function for the cleaved BDNFpro, which increases TrkB/SorCS2 receptor complex at post-synaptic sites. Astrocytic BDNFpro release reinforced TrkB phosphorylation to sustain long-term synaptic potentiation and to retain memory in the novel object recognition behavioral test. Thus, the switch from one inactive state to a multi-functional one of the proBDNF provides post-synaptic changes that survive the initial activation. This molecular asset confines local information storage in astrocytic microdomains to selectively support memory circuits.


Assuntos
Astrócitos/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Potenciação de Longa Duração/genética , Glicoproteínas de Membrana/genética , Memória/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas Tirosina Quinases/genética , Receptores de Superfície Celular/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo
3.
Viruses ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34578326

RESUMO

The rapid spread of the pandemic caused by the SARS-CoV-2 virus has created an unusual situation, with rapid searches for compounds to interfere with the biological processes exploited by the virus. Doxycycline, with its pleiotropic effects, including anti-viral activity, has been proposed as a therapeutic candidate for COVID-19 and about twenty clinical trials have started since the beginning of the pandemic. To gain information on the activity of doxycycline against SARS-CoV-2 infection and clarify some of the conflicting clinical data published, we designed in vitro binding tests and infection studies with a pseudotyped virus expressing the spike protein, as well as a clinically isolated SARS-CoV-2 strain. Doxycycline inhibited the transduction of the pseudotyped virus in Vero E6 and HEK-293 T cells stably expressing human receptor angiotensin-converting enzyme 2 but did not affect the entry and replication of SARS-CoV-2. Although this conclusion is apparently disappointing, it is paradigmatic of an experimental approach aimed at developing an integrated multidisciplinary platform which can shed light on the mechanisms of action of potential anti-COVID-19 compounds. To avoid wasting precious time and resources, we believe very stringent experimental criteria are needed in the preclinical phase, including infectivity studies with clinically isolated SARS-CoV-2, before moving on to (futile) clinical trials.


Assuntos
COVID-19/virologia , Interações Hospedeiro-Patógeno , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Fenômenos Fisiológicos Virais/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , Ciclo Celular , Chlorocebus aethiops , Doxiciclina/farmacologia , Células HEK293 , Humanos , Ligação Proteica , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus , Transdução Genética , Células Vero
4.
Commun Biol ; 4(1): 62, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33437023

RESUMO

Recent computational advancements in the simulation of biochemical processes allow investigating the mechanisms involved in protein regulation with realistic physics-based models, at an atomistic level of resolution. These techniques allowed us to design a drug discovery approach, named Pharmacological Protein Inactivation by Folding Intermediate Targeting (PPI-FIT), based on the rationale of negatively regulating protein levels by targeting folding intermediates. Here, PPI-FIT was tested for the first time on the cellular prion protein (PrP), a cell surface glycoprotein playing a key role in fatal and transmissible neurodegenerative pathologies known as prion diseases. We predicted the all-atom structure of an intermediate appearing along the folding pathway of PrP and identified four different small molecule ligands for this conformer, all capable of selectively lowering the load of the protein by promoting its degradation. Our data support the notion that the level of target proteins could be modulated by acting on their folding pathways, implying a previously unappreciated role for folding intermediates in the biological regulation of protein expression.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Dobramento de Proteína , Animais , Sítios de Ligação , Simulação por Computador , Retículo Endoplasmático/metabolismo , Fibroblastos , Células HEK293 , Humanos , Ligantes , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Reprodutibilidade dos Testes
5.
ACS Appl Bio Mater ; 3(12): 8361-8374, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019608

RESUMO

The in vitro degradation profile and the cytotoxicity of the degradation products of a silk fibroin (SF)-based nerve conduit (SilkBridge), with a complex three-layered wall architecture comprising both native and regenerated (electrospun) fibers, are reported. The bacterial protease type XIV from Streptomyces griseus was used as a hydrolytic agent at three different enzyme/substrate ratios (1:8, 1:80, and 1:800 w/w) to account for the different susceptibility to degradation of the native and regenerated components. The incubation time was extended up to 91 days. At fixed time points, the remaining device, the insoluble debris, and the incubation buffers containing soluble degradation products were separated and analyzed. The electrospun fibers forming the inner and outer layers of the conduit wall were almost completely degraded within 10 days of incubation at an enzyme/substrate ratio of 1:80 w/w. The progression of degradation was highlighted by the emergence of zones of erosion and discontinuity along the electrospun fibers, weakening of the electrospun layers, and decrease in resistance to compressive stress. Native SF microfibers forming the middle layer of the conduit wall displayed a higher resistance to enzymatic degradation. When incubated at an enzyme/substrate ratio of 1:8 w/w, the weight decreased gradually over the incubation time as a consequence of fiber erosion and fragmentation. Analogously, the tensile properties markedly decreased. Both spectroscopic and thermal analyses confirmed the gradual increase in the crystalline character of the fibers. The incubation buffers containing the soluble degradation products were subjected to cytotoxicity testing with human HEK293 cells and mouse neuroblastoma N2a cells. No detrimental effects on cell viability were observed, suggesting that the degradation products do not retain any toxic property. Finally, the mass spectrometry analysis of degradation products showed that the SF polypeptides recovered in the incubation buffers were representative of the aminoacidic sequence of the fibroin light chain and of the highly repetitive fibroin heavy chain, indicating that virtually the entire sequence of the fibroin protein constituent of SilkBridge was degraded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA