Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 260(3): 64, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073466

RESUMO

MAIN CONCLUSION: We identified tomato leaf cuticle and root suberin monomers that play a role in the response to nitrogen deficiency and salinity stress and discuss their potential agronomic value for breeding. The plant cuticle plays a key role in plant-water relations, and cuticle's agronomic value in plant breeding programs is currently under investigation. In this study, the tomato cutin mutant cd1, with altered fruit cuticle, was physiologically characterized under two nitrogen treatments and three salinity levels. We evaluated leaf wax and cutin load and composition, root suberin, stomatal conductance, photosynthetic rate, partial factor productivity from applied N, flower and fruit number, fruit size and cuticular transpiration, and shoot and root biomass. Both nitrogen and salinity treatments altered leaf cuticle and root suberin composition, regardless of genotype (cd1 or M82). Compared with M82, the cd1 mutant showed lower shoot biomass and reduced partial factor productivity from applied N under all treatments. Under N depletion, cd1 showed altered leaf wax composition, but was comparable to the WT under sufficient N. Under salt treatment, cd1 showed an increase in leaf wax and cutin monomers. Root suberin content of cd1 was lower than M82 under control conditions but comparable under higher salinity levels. The tomato mutant cd1 had a higher fruit cuticular transpiration rate, and lower fruit surface area compared to M82. These results show that the cd1 mutation has complex effects on plant physiology, and growth and development beyond cutin deficiency, and offer new insights on the potential agronomic value of leaf cuticle and root suberin for tomato breeding.


Assuntos
Lipídeos de Membrana , Mutação , Nitrogênio , Folhas de Planta , Raízes de Plantas , Salinidade , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Nitrogênio/metabolismo , Lipídeos de Membrana/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Lipídeos , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Frutas/fisiologia , Fotossíntese , Transpiração Vegetal , Estresse Salino/genética , Ceras/metabolismo , Biomassa , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Flores/efeitos dos fármacos
2.
AoB Plants ; 14(1): plab072, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35079327

RESUMO

Salt stress impairs growth and yield in tomato, which is mostly cultivated in arid and semi-arid areas of the world. A number of wild tomato relatives (Solanum pimpinellifolium, S. pennellii, S. cheesmaniae and S. peruvianum) are endemic to arid coastal areas and able to withstand higher concentration of soil salt concentrations, making them a good genetic resource for breeding efforts aimed at improving salt tolerance and overall crop improvement. However, the complexity of salt stress response makes it difficult to introgress tolerance traits from wild relatives that could effectively increase tomato productivity under high soil salt concentrations. Under commercial production, biomass accumulation is key for high fruit yields, and salt tolerance management strategies should aim to maintain a favourable plant water and nutrient status. In this review, we first compare the effects of salt stress on the physiology of the domesticated tomato and its wild relatives. We then discuss physiological and energetic trade-offs for the different salt tolerance mechanisms found within the Lycopersicon clade, with a focus on the importance of root traits to sustain crop productivity.

3.
Front Plant Sci ; 11: 618488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552111

RESUMO

Environments with short growing seasons and variable climates can have soil temperatures that are suboptimal for chilling-sensitive crops. These conditions can adversely affect root growth and physiological performance thus impairing water and nutrient uptake. Four greenhouse trials and a field study were conducted to investigate if rootstocks can enhance tomato performance under suboptimal soil temperatures (SST). In a controlled greenhouse environment, we exposed four commercial rootstocks (Estamino, Maxifort, RST-04-106-T, and Supernatural) grafted with a common scion (cv. BHN-589) to optimal (mean: 24°C) and SST (mean: 13.5°C) and compared their performance with the non-grafted BHN-589 cultivar. Several root and shoot physiological traits were evaluated: root hydraulic conductivity and conductance, root anatomy, leaf gas exchange, leaf δ13C, shoot C and N, and biomass. Under field conditions, the same five phenotypes were evaluated for canopy growth, normalized difference vegetation index (NDVI), leaf nutrients, biomass, and yield. Under SST, root hydraulic conductivity (Lp) and conductance (K R), stomatal conductance (g s), and plant biomass decreased. Hydrostatic Lp decreased more than osmotic Lp (Lp ∗ hyd: 39-65%; Lp ∗ os: 14-40%) and some of the reduced conductivity was explained by the increased cortex area of primary roots observed under SST (67-140%). Under optimal soil temperatures, all rootstocks conferred higher g s than the non-grafted cultivar, but only two rootstocks maintained higher g s under SST. All phenotypes showed greater reductions in shoot biomass than root biomass resulting in greater (∼20%) root-to-shoot ratios. In the field, most grafted phenotypes increased early canopy cover, NDVI, shoot biomass, and fruit yield. Greenhouse results showed that Lp ∗ os may be less affected by SST than Lp ∗ hyd and that reductions in Lp may be offset by enhanced root-to-shoot ratios. We show that some commercial rootstocks possess traits that maintained better rates of stomatal conductance and shoot N content, which can contribute toward better plant establishment and improved performance under SST.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA