Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
3.
NAR Cancer ; 5(4): zcad056, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035131

RESUMO

Gene regulatory networks (GRNs) are often deregulated in tumor cells, resulting in altered transcriptional programs that facilitate tumor growth. These altered networks may make tumor cells vulnerable to the inhibition of specific regulatory proteins. Consequently, the reconstruction of GRNs in tumors is often proposed as a means to identify therapeutic targets. While there are examples of individual targets identified using GRNs, the extent to which GRNs can be used to predict sensitivity to targeted intervention in general remains unknown. Here we use the results of genome-wide CRISPR screens to systematically assess the ability of GRNs to predict sensitivity to gene inhibition in cancer cell lines. Using GRNs derived from multiple sources, including GRNs reconstructed from tumor transcriptomes and from curated databases, we infer regulatory gene activity in cancer cell lines from ten cancer types. We then ask, in each cancer type, if the inferred regulatory activity of each gene is predictive of sensitivity to CRISPR perturbation of that gene. We observe slight variation in the correlation between gene regulatory activity and gene sensitivity depending on the source of the GRN and the activity estimation method used. However, we find that there is consistently a stronger relationship between mRNA abundance and gene sensitivity than there is between regulatory gene activity and gene sensitivity. This is true both when gene sensitivity is treated as a binary and a quantitative property. Overall, our results suggest that gene sensitivity is better predicted by measured expression than by GRN-inferred activity.

4.
J Cardiothorac Vasc Anesth ; 37(9): 1550-1567, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353423

RESUMO

This article spotlights the research highlights of this year that specifically pertain to the specialty of anesthesia for heart transplantation. This includes the research on recent developments in the selection and optimization of donors and recipients, including the use of donation after cardiorespiratory death and extended criteria donors, the use of mechanical circulatory support and nonmechanical circulatory support as bridges to transplantation, the effect of COVID-19 on heart transplantation candidates and recipients, and new advances in the perioperative management of these patients, including the use of echocardiography and postoperative outcomes, focusing on renal and cerebral outcomes.


Assuntos
Anestesia em Procedimentos Cardíacos , Anestesia , COVID-19 , Transplante de Coração , Obtenção de Tecidos e Órgãos , Humanos , Doadores de Tecidos
5.
Cancers (Basel) ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980579

RESUMO

Epigenetic dysregulation is a hallmark of many haematological malignancies and is very frequent in acute myeloid leukaemia (AML). A cardinal example is the altered activity of the Polycomb Repressive Complex 2 (PRC2) due to somatic mutations and deletions in genes encoding PRC2 core factors that are necessary for correct complex assembly. These genetic alterations typically lead to reduced histone methyltransferase activity that, in turn, has been strongly linked to poor prognosis and chemoresistance. In this review, we provide an overview of genetic alterations of PRC components in AML, with particular reference to structural and functional features of PRC2 factors. We further review genetic interactions between these alterations and other AML-associated mutations in both adult and paediatric leukaemias. Finally, we discuss reported prognostic links between PRC2 mutations and deletions and disease outcomes and potential implications for therapy.

6.
Blood Cancer J ; 12(1): 14, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082269

RESUMO

T-cell acute lymphoblastic leukemias (T-ALL) represent 15% of pediatric and 25% of adult ALL. Since they have a particularly poor outcome in relapsed/refractory cases, identifying prognosis factors at diagnosis is crucial to adapting treatment for high-risk patients. Unlike acute myeloid leukemia and BCP ALL, chromosomal rearrangements leading to chimeric fusion-proteins with strong prognosis impact are sparsely reported in T-ALL. To address this issue an RT-MPLA assay was applied to a consecutive series of 522 adult and pediatric T-ALLs and identified a fusion transcript in 20% of cases. PICALM-MLLT10 (4%, n = 23), NUP214-ABL1 (3%, n = 19) and SET-NUP214 (3%, n = 18) were the most frequent. The clinico-biological characteristics linked to fusion transcripts in a subset of 235 patients (138 adults in the GRAALL2003/05 trials and 97 children from the FRALLE2000 trial) were analyzed to identify their prognosis impact. Patients with HOXA trans-deregulated T-ALLs with MLLT10, KMT2A and SET fusion transcripts (17%, 39/235) had a worse prognosis with a 5-year EFS of 35.7% vs 63.7% (HR = 1.63; p = 0.04) and a trend for a higher cumulative incidence of relapse (5-year CIR = 45.7% vs 25.2%, HR = 1.6; p = 0.11). Fusion transcripts status in T-ALL can be robustly identified by RT-MLPA, facilitating risk adapted treatment strategies for high-risk patients.


Assuntos
Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Prognóstico , Linfócitos T/patologia
7.
FEBS J ; 289(15): 4355-4370, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34028982

RESUMO

It is essential to relate the biology of acute leukaemia to normal blood cell development. In this review, we discuss how modern models of haematopoiesis might inform approaches to diagnosis and management of immature leukaemias, with a specific focus on T-lymphoid and myeloid cases. In particular, we consider whether next-generation analytical tools could provide new perspectives that could improve our understanding of immature blood cancer biology.


Assuntos
Leucemia Mieloide Aguda , Doença Aguda , Hematopoese , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia
9.
Leukemia ; 35(3): 724-736, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32655144

RESUMO

Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunophenotypically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature CD34+CD1a-CD7- subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment allocation and evaluation of therapeutic options.


Assuntos
Biomarcadores Tumorais/genética , Diferenciação Celular , Leucemia Aguda Bifenotípica/mortalidade , Leucemia Mieloide Aguda/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Transcriptoma , Biologia Computacional , Humanos , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Taxa de Sobrevida
10.
Cell Rep ; 30(2): 299-307.e3, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940477

RESUMO

Mutations and deletions of polycomb repressive complex (PRC) components are increasingly recognized to affect tumor biology in a range of cancers. However, little is known about how genetic alterations of PRC-interacting molecules such as the core binding factor (CBF) complex influence polycomb activity. We report that the acute myeloid leukemia (AML)-associated CBFß-SMMHC fusion oncoprotein physically interacts with the PRC1 complex and that these factors co-localize across the AML genome in an apparently PRC2-independent manner. Depletion of CBFß-SMMHC caused substantial increases in genome-wide PRC1 binding and marked changes in the association between PRC1 and the CBF DNA-binding subunit RUNX1. PRC1 was more likely to be associated with actively transcribed genes in CBFß-SMMHC-expressing cells. CBFß-SMMHC depletion had heterogeneous effects on gene expression, including significant reductions in transcription of ribosomal loci occupied by PRC1. Our results provide evidence that CBFß-SMMHC markedly and diversely affects polycomb recruitment and transcriptional regulation across the AML genome.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Epigênese Genética , Feminino , Células HeLa , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Proteínas de Fusão Oncogênica/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Ativação Transcricional
11.
Br J Haematol ; 188(1): 63-76, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31804725

RESUMO

Comprehensive cataloguing of the acute myeloid leukaemia (AML) genome has revealed a high frequency of mutations and deletions in epigenetic factors that are frequently linked to treatment resistance and poor patient outcome. In this review, we discuss how the epigenetic mechanisms that underpin normal haematopoiesis are subverted in AML, and in particular how these processes are altered in childhood and adolescent leukaemias. We also provide a brief summary of the burgeoning field of epigenetic-based therapies, and how AML treatment might be improved through provision of better conceptual frameworks for understanding the pleiotropic molecular effects of epigenetic disruption.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Hematopoese/genética , Leucemia Mieloide Aguda/genética , Mutação , Adolescente , Criança , Humanos , Leucemia Mieloide Aguda/terapia
12.
Blood Cancer J ; 9(3): 33, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850577

RESUMO

The inv(16) acute myeloid leukemia-associated CBFß-MYH11 fusion is proposed to block normal myeloid differentiation, but whether this subtype of leukemia cells is poised for a unique cell lineage remains unclear. Here, we surveyed the functional consequences of CBFß-MYH11 in primary inv(16) patient blasts, upon expression during hematopoietic differentiation in vitro and upon knockdown in cell lines by multi-omics profiling. Our results reveal that primary inv(16) AML cells share common transcriptomic signatures and epigenetic determiners with megakaryocytes and erythrocytes. Using in vitro differentiation systems, we reveal that CBFß-MYH11 knockdown interferes with normal megakaryocyte maturation. Two pivotal regulators, GATA2 and KLF1, are identified to complementally occupy RUNX1-binding sites upon fusion protein knockdown, and overexpression of GATA2 partly induces a gene program involved in megakaryocyte-directed differentiation. Together, our findings suggest that in inv(16) leukemia, the CBFß-MYH11 fusion inhibits primed megakaryopoiesis by attenuating expression of GATA2/KLF1 and interfering with a balanced transcriptional program involving these two factors.


Assuntos
Fator de Transcrição GATA2/metabolismo , Regulação Leucêmica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Megacariócitos/metabolismo , Proteínas de Fusão Oncogênica/genética , Sítios de Ligação , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Eritropoese/genética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Megacariócitos/citologia , Proteínas de Fusão Oncogênica/metabolismo , Ligação Proteica , Trombopoese , Transcrição Gênica
13.
Haematologica ; 104(8): 1617-1625, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30655366

RESUMO

The prognostic implications of DNMT3A genotype in T-cell acute lymphoblastic leukemia are incompletely understood. We performed comprehensive genetic and clinico-biological analyses of T-cell acute lymphoblastic leukemia patients with DNMT3A mutations treated during the GRAALL-2003 and -2005 studies. Eighteen of 198 cases (9.1%) had DNMT3A alterations. Two patients also had DNMT3A mutations in non-leukemic cell DNA, providing the first potential evidence of age-related clonal hematopoiesis in T-cell acute lymphoblastic leukemia. DNMT3A mutation was associated with older age (median 43.9 years vs 29.4 years, P<0.001), immature T-cell receptor genotype (53.3% vs 24.4%, P=0.016) and lower remission rates (72.2% mutated vs 94.4% non-mutated, P=0.006). DNMT3A alterations were significantly associated with worse clinical outcome, with higher cumulative incidence of relapse (HR 2.33, 95% CI: 1.05-5.16, P=0.037) and markedly poorer event-free survival (HR 3.22, 95% CI: 1.81-5.72, P<0.001) and overall survival (HR 2.91, 95% CI: 1.56-5.43, P=0.001). Adjusting for age as a covariate, or restricting the analysis to patients over 40 years, who account for almost 90% of DNMT3A-mutated cases, did not modify these observations. In multivariate analysis using the risk factors that were used to stratify treatment during the GRAALL studies, DNMT3A mutation was significantly associated with shorter event-free survival (HR 2.33, 95% CI: 1.06 - 4.04, P=0.02). Altogether, these results identify DNMT3A genotype as a predictor of aggressive T-cell acute lymphoblastic leukemia biology. The GRAALL-2003 and -2005 studies were registered at http://www.ClinicalTrials.gov as #NCT00222027 and #NCT00327678, respectively.


Assuntos
Envelhecimento/genética , DNA (Citosina-5-)-Metiltransferases/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Adulto , Alelos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , DNA Metiltransferase 3A , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Genótipo , Hematopoese/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Prognóstico , Análise de Sequência de DNA , Resultado do Tratamento
15.
Mol Cancer Res ; 16(3): 470-475, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29330284

RESUMO

Leukemias are frequently characterized by the expression of oncogenic fusion chimeras that normally arise due to chromosomal rearrangements. Intergenically spliced chimeric RNAs (ISC) are transcribed in the absence of structural genomic changes, and aberrant ISC expression is now recognized as a potential driver of cancer. To better understand these potential oncogenic drivers, high-throughput RNA sequencing was performed on T-acute lymphoblastic leukemia (T-ALL) patient specimens (n = 24), and candidate T-ALL-related ISCs were identified (n = 55; a median of 4/patient). In-depth characterization of the NFATC3-PLA2G15 chimera, which was variably expressed in primary T-ALL, was performed. Functional assessment revealed that the fusion had lower activity than wild-type NFATC3 in vitro, and T-ALLs with elevated NFATC3-PLA2G15 levels had reduced transcription of canonical NFAT pathway genes in vivo Strikingly, high expression of the NFATC3-PLA2G15 chimera correlated with aggressive disease biology in murine patient-derived T-ALL xenografts, and poor prognosis in human T-ALL patients. Mol Cancer Res; 16(3); 470-5. ©2018 AACR.


Assuntos
Aciltransferases , Fatores de Transcrição NFATC , Proteínas de Fusão Oncogênica , Fosfolipases A2 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Humanos , Masculino , Camundongos , Aciltransferases/genética , Aciltransferases/metabolismo , Células HEK293 , Xenoenxertos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Splicing de RNA/genética , Análise de Sobrevida
17.
J Clin Oncol ; 35(23): 2683-2691, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28605290

RESUMO

Purpose Early thymic precursor (ETP) acute lymphoblastic leukemia (ALL) is an immunophenotypically defined subgroup of T-cell ALL (T-ALL) associated with high rates of intrinsic treatment resistance. Studies in children have shown that the negative prognostic impact of chemotherapy resistance is abrogated by the implementation of early response-based intensification strategies. Comparable data in adults are lacking. Patients and Methods We performed comprehensive clinicobiologic, genetic, and survival analyses of a large cohort of 213 adult patients with T-ALL, including 47 patients with ETP-ALL, treated in the GRAALL (Group for Research on Adult Acute Lymphoblastic Leukemia) -2003 and -2005 studies. Results Targeted next-generation sequencing revealed that the genotype of immunophenotypically defined adult T-ALL is similar to the pediatric equivalent, with high rates of mutations in factors involved in cytokine receptor and RAS signaling (62.2%), hematopoietic development (29.7%), and chemical modification of histones (48.6%). In contrast to pediatric cases, mutations in DNA methylation factor genes were also common (32.4%). We found that despite expected high levels of early bone marrow chemotherapy resistance (87%), the overall prognosis for adults with ETP-ALL treated using the GRAALL protocols was not inferior to that of the non-ETP-ALL group (5-year overall survival: ETP, 59.6%; 95% CI, 44.2% to 72.0% v non-ETP, 66.5%; 95% CI, 58.7% to 73.2%; P = 0.33) and that allogeneic stem-cell transplantation had a beneficial effect in a large proportion of patients with ETP-ALL. Conclusion Our results suggest that the use of response-based risk stratification and therapy intensification abrogates the poor prognosis of adult ETP-ALL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Neoplasias do Timo/genética , Neoplasias do Timo/terapia , Adulto , Ciclofosfamida/administração & dosagem , Metilação de DNA/genética , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Genótipo , Hematopoese/genética , Histonas/química , Humanos , Imunofenotipagem , Masculino , Prognóstico , Receptores de Citocinas/genética , Transdução de Sinais/genética , Taxa de Sobrevida , Transplante Homólogo , Proteínas ras/genética , Proteínas ras/metabolismo
18.
Oncotarget ; 7(40): 65923-65936, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27588474

RESUMO

Ikaros and Foxp1 are transcription factors that play key roles in normal lymphopoiesis and lymphoid malignancies. We describe a novel physical and functional interaction between the proteins, which requires the central zinc finger domain of Ikaros. The Ikaros-Foxp1 interaction is abolished by deletion of this region, which corresponds to the IK6 isoform that is commonly associated with high-risk acute lymphoblastic leukemia (ALL). We also identify the Gpr132 gene, which encodes the orphan G protein-coupled receptor G2A, as a novel target for Foxp1. Increased expression of Foxp1 enhanced Gpr132 transcription and caused cell cycle changes, including G2 arrest. Co-expression of wild-type Ikaros, but not IK6, displaced Foxp1 binding from the Gpr132 gene, reversed the increase in Gpr132 expression and inhibited G2 arrest. Analysis of primary ALL samples revealed a significant increase in GPR132 expression in IKZF1-deleted BCR-ABL negative patients, suggesting that levels of wild-type Ikaros may influence the regulation of G2A in B-ALL. Our results reveal a novel effect of Ikaros haploinsufficiency on Foxp1 functioning, and identify G2A as a potential modulator of the cell cycle in Ikaros-deleted B-ALL.


Assuntos
Linfócitos B/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Fator de Transcrição Ikaros/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Repressoras/metabolismo , Apoptose , Linfócitos B/patologia , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células , Fatores de Transcrição Forkhead/genética , Proteínas de Fusão bcr-abl/genética , Deleção de Genes , Humanos , Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores Acoplados a Proteínas G/genética , Proteínas Repressoras/genética , Células Tumorais Cultivadas
19.
Haematologica ; 101(6): 732-40, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26944475

RESUMO

UNLABELLED: Gene expression studies have consistently identified a HOXA-overexpressing cluster of T-cell acute lymphoblastic leukemias, but it is unclear whether these constitute a homogeneous clinical entity, and the biological consequences of HOXA overexpression have not been systematically examined. We characterized the biology and outcome of 55 HOXA-positive cases among 209 patients with adult T-cell acute lymphoblastic leukemia uniformly treated during the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003 and -2005 studies. HOXA-positive patients had markedly higher rates of an early thymic precursor-like immunophenotype (40.8% versus 14.5%, P=0.0004), chemoresistance (59.3% versus 40.8%, P=0.026) and positivity for minimal residual disease (48.5% versus 23.5%, P=0.01) than the HOXA-negative group. These differences were due to particularly high frequencies of chemoresistant early thymic precursor-like acute lymphoblastic leukemia in HOXA-positive cases harboring fusion oncoproteins that transactivate HOXA Strikingly, the presence of an early thymic precursor-like immunophenotype was associated with marked outcome differences within the HOXA-positive group (5-year overall survival 31.2% in HOXA-positive early thymic precursor versus 66.7% in HOXA-positive non-early thymic precursor, P=0.03), but not in HOXA-negative cases (5-year overall survival 74.2% in HOXA-negative early thymic precursor versus 57.2% in HOXA-negative non-early thymic precursor, P=0.44). Multivariate analysis further revealed that HOXA positivity independently affected event-free survival (P=0.053) and relapse risk (P=0.039) of chemoresistant T-cell acute lymphoblastic leukemia. These results show that the underlying mechanism of HOXA deregulation dictates the clinico-biological phenotype, and that the negative prognosis of early thymic precursor acute lymphoblastic leukemia is exclusive to HOXA-positive patients, suggesting that early treatment intensification is currently suboptimal for therapeutic rescue of HOXA-positive chemoresistant adult early thymic precursor acute lymphoblastic leukemia. TRIAL REGISTRATION: The GRAALL-2003 and -2005 studies were registered at http://www.clinicaltrials.gov as #NCT00222027 and #NCT00327678, respectively.


Assuntos
Expressão Gênica , Proteínas de Homeodomínio/genética , Fenótipo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Timo/metabolismo , Timo/patologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Prognóstico , Recidiva , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA