Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Clin Med ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892912

RESUMO

Background: Cardiorespiratory fitness positively correlates with longevity and immune health. Regular exercise may provide health benefits by reducing systemic inflammation. In chronic disease conditions, such as chronic heart failure and chronic fatigue syndrome, mechanistic links have been postulated between inflammation, muscle weakness, frailty, catabolic/anabolic imbalance, and aberrant chronic activation of immunity with monocyte upregulation. We hypothesize that (1) temporal changes in transcriptome profiles of peripheral blood mononuclear cells during strenuous acute bouts of exercise using cardiopulmonary exercise testing are present in adult subjects, (2) these temporal dynamic changes are different between healthy persons and heart failure patients and correlate with clinical exercise-parameters and (3) they portend prognostic information. Methods: In total, 16 Heart Failure (HF) patients and 4 healthy volunteers (HV) were included in our proof-of-concept study. All participants underwent upright bicycle cardiopulmonary exercise testing. Blood samples were collected at three time points (TP) (TP1: 30 min before, TP2: peak exercise, TP3: 1 h after peak exercise). We divided 20 participants into 3 clinically relevant groups of cardiorespiratory fitness, defined by peak VO2: HV (n = 4, VO2 ≥ 22 mL/kg/min), mild HF (HF1) (n = 7, 14 < VO2 < 22 mL/kg/min), and severe HF (HF2) (n = 9, VO2 ≤ 14 mL/kg/min). Results: Based on the statistical analysis with 20-100% restriction, FDR correction (p-value 0.05) and 2.0-fold change across the three time points (TP1, TP2, TP3) criteria, we obtained 11 differentially expressed genes (DEG). Out of these 11 genes, the median Gene Expression Profile value decreased from TP1 to TP2 in 10 genes. The only gene that did not follow this pattern was CCDC181. By performing 1-way ANOVA, we identified 8/11 genes in each of the two groups (HV versus HF) while 5 of the genes (TTC34, TMEM119, C19orf33, ID1, TKTL2) overlapped between the two groups. We found 265 genes which are differentially expressed between those who survived and those who died. Conclusions: From our proof-of-concept heart failure study, we conclude that gene expression correlates with VO2 peak in both healthy individuals and HF patients, potentially by regulating various physiological processes involved in oxygen uptake and utilization during exercise. Multi-omics profiling may help identify novel biomarkers for assessing exercise capacity and prognosis in HF patients, as well as potential targets for therapeutic intervention to improve VO2 peak and quality of life. We anticipate that our results will provide a novel metric for classifying immune health.

2.
Front Immunol ; 13: 825108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251005

RESUMO

BACKGROUND: Over the last decade, expanding use of molecular diagnostics in heart transplantation has allowed implementation of non-invasive surveillance strategies for monitoring allograft health. The commercially available HeartCare platform combines the AlloMap gene expression profiling assay and the AlloSure donor-derived cell-free DNA test (dd-cfDNA). Beyond their established use for assessment of rejection, evidence is building for predictive utility, with the longitudinal AlloMap Variability score previously shown to correlate with the risk of future rejection, graft dysfunction, re-transplantation, or death. In this single-center, retrospective pilot study, we evaluated the performance of a novel AlloSure Variability metric in predicting mortality in a cohort of heart transplant recipients. METHODS: Seventy-two adult heart transplant recipients with at least 3 concurrent AlloMap/AlloSure results were included. Demographic, clinical, imaging, and laboratory parameters were captured. Variability was defined as the standard deviation of longitudinal AlloMap/AlloSure results. A Cox multivariable adjusted proportional hazards model was used to evaluate the variability metrics as predictors of mortality. Associations between AlloMap/AlloSure variability and donor specific antibody (DSA) status were also assessed. RESULTS: A total of 5 patients (6.9%) died during a median follow-up of 480 days. In a univariate Cox proportional hazards model, higher AlloSure variability (HR 1.66, 95%CI 1.14 - 2.41), but not AlloMap variability or the cross-sectional AlloSure/AlloMap results was associated with increased mortality risk. Longitudinal AlloSure variability was also higher among patients with both preformed DSA and those developing de novo DSA. CONCLUSION: Our results suggest that increased variability of dd-cfDNA in heart transplant patients is associated with both mortality risk and the presence of donor specific antibodies. These findings highlight the added value of longitudinal data in the interpretation of AlloMap/AlloSure scores in this population and open the door to larger studies investigating the utility of these metrics in shaping post-transplant clinical care paradigms.


Assuntos
Ácidos Nucleicos Livres , Transplante de Coração , Adulto , Anticorpos , Ácidos Nucleicos Livres/genética , Estudos Transversais , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Transplante de Coração/efeitos adversos , Humanos , Projetos Piloto , Estudos Retrospectivos
3.
J Biol Methods ; 7(1): e123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31976350

RESUMO

In preparation to create a clinical assay that predicts 1-year survival status of advanced heart failure (AdHF) patients before surgical/interventional therapies and to select the appropriate clinical assay platform for the future assay, we compared the properties of next generation sequencing (NGS) used in the gene discovery phase to the NanoString platform used in the clinical assay development phase. In 25 AdHF patients in a tertiary academic medical center from 2015 to 2016, PBMC samples were collected and aliquoted for NGS RNA whole transcriptome sequencing and compared to 770 genes represented on NanoString's PanCancer IO 360 Gene Expression research panel. Prior to statistical analysis, NanoString and NGS expression values were log transformed. We computed Pearson correlation coefficients for each sample, comparing gene expression values between NanoString and NGS across the set of matched genes and for each of the matched genes across the set of samples. Genes were grouped by average NGS expression, and the NanoString-NGS correlation for each group was computed. Out of 770 genes from the NanoString panel, 734 overlapped between both platforms and showed high intrasample correlation. Within an individual sample, there was an expression-level dependent correlation between both platforms. The low- vs. intermediate/high-expression groups showed NGS average correlation 0.21 vs. 0.58-0.68, respectively, and NanoString average correlation 0.07-0.34 vs. 0.59-0.70, respectively. NanoString demonstrated high reproducibility (R 2 > 0.99 for 100 ng input), sensitivity (probe counts between 100 and 500 detected and quantified), and robustness (similar gene signature scores across different RNA input concentrations, cartridges, and outcomes). Data from NGS and NanoString were highly correlated. These platforms play a meaningful, complementary role in the biomarker development process.

4.
Hum Immunol ; 80(2): 126-134, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30445099

RESUMO

Noninvasive immunologic analysis of peripheral blood holds promise for explaining the mechanism of development of adverse clinical outcomes, and may also become a method for patient risk stratification before or after mechanical circulatory support device (MCSD) implantation. Dysregulation of the innate immune system is associated with increased patient age but has yet to be evaluated in the older patient with advanced heart failure undergoing MCSD surgery. Patients pre- and post-MCSD implantation had peripheral blood mononuclear cells (PBMC) and serum isolated. Multiparameter flow cytometry was used to analyze markers of innate cell function, including monocyte subtypes. Multiplex cytokine analysis was performed. MELD-XI and SOFA scores were utilized as surrogate markers of outcomes. Increased levels of pro-inflammatory cytokines including IL-15, TNF-α, and IL-10 were associated with increased MELD-XI and SOFA scores. IL-8, TNF- α, and IL-10 were associated with risk of death after MCSD implantation, even with correction for patient age. Increased frequency of 'classical' monocytes (CD14 + CD16-) were associated with increased MELD-XI and SOFA scores. This suggests that inflammation and innate immune system activation contribute to progression to multiorgan system failure and death after MCSD surgery. Development of noninvasive monitoring of peripheral blood holds promise for biomarker development for candidate selection and patient risk stratification.


Assuntos
Fatores Etários , Procedimentos Cirúrgicos Cardíacos , Insuficiência Cardíaca/cirurgia , Coração Auxiliar , Monócitos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Feminino , Insuficiência Cardíaca/mortalidade , Humanos , Imunidade Inata , Mediadores da Inflamação/sangue , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida , Resultado do Tratamento
5.
G3 (Bethesda) ; 8(11): 3499-3506, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30201759

RESUMO

We describe a simple bioinformatics method for biomarker discovery that is based on the analysis of global transcript levels in a population of inbred mouse strains showing variation for disease-related traits. This method has advantages such as controlled environment and accessibility to heart and plasma tissue in the preclinical selection stage. We illustrate the approach by identifying candidate heart failure (HF) biomarkers by overlaying mouse transcriptome and clinical traits from 91 Hybrid Mouse Diversity Panel (HMDP) inbred strains and human HF transcriptome from the Myocardial Applied Genomics Network (MAGNet) consortium. We found that some of the top differentially expressed genes correlated with known human HF biomarkers, such as galectin-3 and tissue inhibitor of metalloproteinase 1. Using ELISA assays, we investigated one novel candidate, Glycoprotein NMB, in a mouse model of chronic ß-adrenergic stimulation by isoproterenol (ISO) induced HF. We observed significantly lower GPNMB plasma levels in the ISO model compared to the control group (p-value = 0.007). In addition, we assessed GPNMB plasma levels among 389 HF cases and controls from the METabolic Syndrome In Men (METSIM) study. Lower levels of GPNMB were also observed in patients with HF from the METSIM study compared to non-HF controls (p-value < 0.0001). In summary, we have identified several candidate biomarkers for HF using the cardiac transcriptome data in a population of mice that may be directly relevant and applicable to human populations.


Assuntos
Proteínas do Olho/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/metabolismo , Idoso , Animais , Biomarcadores/metabolismo , Biologia Computacional , Modelos Animais de Doenças , Feminino , Galectina 3/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Inibidor Tecidual de Metaloproteinase-1/genética , Transcriptoma
6.
Hum Immunol ; 79(4): 203-212, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29409843

RESUMO

Immunologic impairment may contribute to poor outcomes after implantation of mechanical circulatory support device (MCSD), with infection often as a terminal event. The study of immune dysfunction is of special relevance given the growing numbers of older patients with heart disease. The aim of the study was to define which immunologic characteristics are associated with development of adverse clinical outcomes after MCSD implantation. We isolated peripheral blood mononuclear cells (PBMC) from patients pre- and up to 20 days post-MCSD implantation and analyzed them by multiparameter flow cytometry for T cell dysfunction, including terminal differentiation, exhaustion, and senescence. We used MELD-XI and SOFA scores measured at each time point as surrogate markers of clinical outcome. Older patients demonstrated increased frequencies of terminally differentiated T cells as well as NKT cells. Increased frequency of terminally differentiated and immune senescent T cells were associated with worse clinical outcome as measured by MELD-XI and SOFA scores, and with progression to infection and death. In conclusion, our data suggest that T cell dysfunction, independently from age, is associated with poor outcomes after MCSD implantation, providing a potential immunologic mechanism behind patient vulnerability to multiorgan dysfunction and death. This noninvasive approach to PBMC evaluation holds promise for candidate evaluation and patient monitoring.


Assuntos
Insuficiência Cardíaca/cirurgia , Coração Auxiliar/efeitos adversos , Insuficiência de Múltiplos Órgãos/imunologia , Complicações Pós-Operatórias/imunologia , Linfócitos T/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Feminino , Citometria de Fluxo , Humanos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/diagnóstico , Complicações Pós-Operatórias/diagnóstico , Estudos Prospectivos , Índice de Gravidade de Doença , Resultado do Tratamento
7.
PLoS One ; 12(12): e0189420, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29236770

RESUMO

BACKGROUND: Multiorgan dysfunction syndrome contributes to adverse outcomes in advanced heart failure (AdHF) patients after mechanical circulatory support (MCS) implantation and is associated with aberrant leukocyte activity. We tested the hypothesis that preoperative peripheral blood mononuclear cell (PBMC) gene expression profiles (GEP) can predict early postoperative improvement or non-improvement in patients undergoing MCS implantation. We believe this information may be useful in developing prognostic biomarkers. METHODS & DESIGN: We conducted a study with 29 patients undergoing MCS-surgery in a tertiary academic medical center from 2012 to 2014. PBMC samples were collected one day before surgery (day -1). Clinical data was collected on day -1 and day 8 postoperatively. Patients were classified by Sequential Organ Failure Assessment score and Model of End-stage Liver Disease Except INR score (measured eight days after surgery): Group I = improving (both scores improved from day -1 to day 8, n = 17) and Group II = not improving (either one or both scores did not improve from day -1 to day 8, n = 12). RNA-sequencing was performed on purified mRNA and analyzed using Next Generation Sequencing Strand. Differentially expressed genes (DEGs) were identified by Mann-Whitney test with Benjamini-Hochberg correction. Preoperative DEGs were used to construct a support vector machine algorithm to predict Group I vs. Group II membership. RESULTS: Out of 28 MCS-surgery patients alive 8 days postoperatively, one-year survival was 88% in Group I and 27% in Group II. We identified 28 preoperative DEGs between Group I and II, with an average 93% prediction accuracy. Out of 105 DEGs identified preoperatively between year 1 survivors and non-survivors, 12 genes overlapped with the 28 predictive genes. CONCLUSIONS: In AdHF patients following MCS implantation, preoperative PBMC-GEP predicts early changes in organ function scores and correlates with long-term outcomes. Therefore, gene expression lends itself to outcome prediction and warrants further studies in larger longitudinal cohorts.


Assuntos
Perfilação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Coração Auxiliar/estatística & dados numéricos , Leucócitos Mononucleares/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sobrevida , Transcriptoma
8.
BMC Med Genomics ; 10(1): 52, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851355

RESUMO

BACKGROUND: The implantation of mechanical circulatory support devices in heart failure patients is associated with a systemic inflammatory response, potentially leading to death from multiple organ dysfunction syndrome. Previous studies point to the involvement of many mechanisms, but an integrative hypothesis does not yet exist. Using time-dependent whole-genome mRNA expression in circulating leukocytes, we constructed a systems-model to improve mechanistic understanding and prediction of adverse outcomes. METHODS: We sampled peripheral blood mononuclear cells from 22 consecutive patients undergoing mechanical circulatory support device (MCS) surgery, at 5 timepoints: day -1 preoperative, and postoperative days 1, 3, 5, and 8. Clinical phenotyping was performed using 12 clinical parameters, 2 organ dysfunction scoring systems, and survival outcomes. We constructed a strictly phenotype-driven time-dependent non-supervised systems-representation using weighted gene co-expression network analysis, and annotated eigengenes using gene ontology, pathway, and transcription factor binding site enrichment analyses. Genes and eigengenes were mapped to the clinical phenotype using a linear mixed-effect model, with Cox models also fit at each timepoint to survival outcomes. RESULTS: We inferred a 19-module network, in which most module eigengenes correlated with at least one aspect of the clinical phenotype. We observed a response of advanced heart failure patients to surgery orchestrated into stages: first, activation of the innate immune response, followed by anti-inflammation, and finally reparative processes such as mitosis, coagulation, and apoptosis. Eigengenes related to red blood cell production and extracellular matrix degradation became predictors of survival late in the timecourse corresponding to multiorgan dysfunction and disseminated intravascular coagulation. CONCLUSIONS: Our model provides an integrative representation of leukocyte biology during the systemic inflammatory response following MCS device implantation. It demonstrates consistency with previous hypotheses, identifying a number of known mechanisms. At the same time, it suggests novel hypotheses about time-specific targets.


Assuntos
Perfilação da Expressão Gênica , Genômica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Leucócitos Mononucleares/metabolismo , Insuficiência de Múltiplos Órgãos/complicações , Adulto , Idoso , Feminino , Redes Reguladoras de Genes , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos
9.
PLoS One ; 9(12): e115097, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517110

RESUMO

BACKGROUND: Heart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP) was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC) transcriptomes obtained from patients' blood samples. Whole blood (WB) samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined. METHODS: We collected blood samples from 31 HF patients (57±15 years old) undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively) (25-75% IQR 7-14 days) and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA) score was used to characterize the severity of MOD into low (≤ 4 points), intermediate (5-11), and high (≥ 12) risk categories correlating with GEP. RESULTS: Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO) analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups. CONCLUSION: GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MOD.


Assuntos
Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/cirurgia , Leucócitos Mononucleares/metabolismo , Período Perioperatório/efeitos adversos , Biomarcadores/metabolismo , Estudos de Casos e Controles , Ontologia Genética , Humanos , Inflamação/sangue , Inflamação/etiologia , Inflamação/genética , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(21): 8867-72, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555578

RESUMO

Estrogen has well-documented neuroprotective effects in a variety of clinical and experimental disorders of the CNS, including autoimmune inflammation, traumatic injury, stroke, and neurodegenerative diseases. The beneficial effects of estrogens in CNS disorders include mitigation of clinical symptoms, as well as attenuation of histopathological signs of neurodegeneration and inflammation. The cellular mechanisms that underlie these CNS effects of estrogens are uncertain, because a number of different cell types express estrogen receptors in the peripheral immune system and the CNS. Here, we investigated the potential roles of two endogenous CNS cell types in estrogen-mediated neuroprotection. We selectively deleted estrogen receptor-α (ERα) from either neurons or astrocytes using well-characterized Cre-loxP systems for conditional gene knockout in mice, and studied the effects of these conditional gene deletions on ERα ligand-mediated neuroprotective effects in a well-characterized model of adoptive experimental autoimmune encephalomyelitis (EAE). We found that the pronounced and significant neuroprotective effects of systemic treatment with ERα ligand on clinical function, CNS inflammation, and axonal loss during EAE were completely prevented by conditional deletion of ERα from astrocytes, whereas conditional deletion of ERα from neurons had no significant effect. These findings show that signaling through ERα in astrocytes, but not through ERα in neurons, is essential for the beneficial effects of ERα ligand in EAE. Our findings reveal a unique cellular mechanism for estrogen-mediated CNS neuroprotective effects by signaling through astrocytes, and have implications for understanding the pathophysiology of sex hormone effects in diverse CNS disorders.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Receptor alfa de Estrogênio/fisiologia , Fármacos Neuroprotetores/farmacologia , Animais , Astrócitos/patologia , Células Cultivadas , Receptor alfa de Estrogênio/deficiência , Inflamação/prevenção & controle , Ligantes , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/prevenção & controle , Neurônios/patologia
11.
J Neurosci ; 30(39): 12950-7, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20881113

RESUMO

In hypothalamic astrocytes obtained from adult female rats, estradiol rapidly increased free cytoplasmic calcium concentrations ([Ca(2+)](i)) that facilitate progesterone synthesis. The present study demonstrated that estradiol (1 nm) significantly and maximally stimulated progesterone synthesis within 5 min, supporting a rapid, nongenomic mechanism. The group I metabotropic glutamate receptor (mGluR1a) antagonist LY 367385 [(S)-(+)-a-amino-4-carboxy-2-methylbenzeneacetic acid] attenuated both the estradiol-induced [Ca(2+)](i) release and progesterone synthesis. To investigate membrane-associated estrogen receptors (mERs), agonists for ERα, ERß, STX-activated protein, and GPR30 were compared. The selective ERα agonist propylpyrazole triole (PPT) and STX most closely mimicked the estradiol-induced [Ca(2+)](i) responses, where PPT was more potent but less efficacious than STX. Only high doses (100 nm) of selective ERß agonist diarylpropionitrile (DPN) and GPR30 agonist G-1 induced estradiol-like [Ca(2+)](i) responses. With the exception of DPN (even at 100 nm), all agonists stimulated progesterone synthesis. The PPT- and STX-induced [Ca(2+)](i) release and progesterone synthesis were blocked by LY 367385. While the G-1-stimulated [Ca(2+)](i) release was blocked by LY 367385, progesterone synthesis was not. Since GPR30 was detected intracellularly but not in the membrane, we interpreted these results to suggest that G-1 could activate mGluR1a on the membrane and GPR30 on the smooth endoplasmic reticulum to release intracellular calcium. Although STX and G-1 maximally stimulated [Ca(2+)](i) release in astrocytes from estrogen receptor-α knock-out (ERKO) mice, estradiol in vivo did not stimulate progesterone synthesis in the ERKO mice. Together, these results indicate that mERα is mainly responsible for the rapid, membrane-initiated estradiol-signaling that leads to progesterone synthesis in hypothalamic astrocytes.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Receptor alfa de Estrogênio/fisiologia , Hipotálamo/metabolismo , Líquido Intracelular/metabolismo , Progesterona/biossíntese , Animais , Cálcio/fisiologia , Membrana Celular/fisiologia , Células Cultivadas , Estradiol/fisiologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Feminino , Hipotálamo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Long-Evans
12.
Neuroendocrinology ; 91(3): 211-22, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20332598

RESUMO

Astrocytes are the most abundant cells in the central nervous system (CNS). It appears that astrocytes are as diverse as neurons, having different phenotypes in various regions throughout the brain and participating in intercellular communication that involves signaling to neurons. It is not surprising then that astrocytes in the hypothalamus have an active role in the CNS regulation of reproduction. In addition to the traditional mechanism involving ensheathment of neurons and processes, astrocytes may have a critical role in regulating estrogen-positive feedback. Work in our laboratory has focused on the relationship between circulating estradiol and progesterone synthesized de novo in the brain. We have demonstrated that circulating estradiol stimulates the synthesis of progesterone in adult hypothalamic astrocytes, and this neuroprogesterone is critical for initiating the LH surge. Estradiol cell signaling is initiated at the cell membrane and involves the transactivation of metabotropic glutamate receptor type 1a (mGluR1a) leading to the release of intracellular stores of calcium. We used surface biotinylation to demonstrate that estrogen receptor-alpha (ERalpha) is present in the cell membrane and has an extracellular portion. Like other membrane receptors, ERalpha is inserted into the membrane and removed via internalization after agonist stimulation. This trafficking is directly regulated by estradiol, which rapidly and transiently increases the levels of membrane ERalpha, and upon activation, increases internalization that finally leads to ERalpha degradation. This autoregulation temporally limits membrane-initiated estradiol cell signaling. Thus, neuroprogesterone, the necessary signal for the LH surge, is released when circulating levels of estradiol peak on proestrus and activate progesterone receptors whose expression has been induced by the gradual rise of estradiol during follicular development.


Assuntos
Astrócitos/fisiologia , Estradiol/fisiologia , Receptor alfa de Estrogênio/metabolismo , Progesterona/fisiologia , Animais , Feminino , Humanos , Hipotálamo/fisiologia , Modelos Biológicos , Receptores de Glutamato Metabotrópico/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia
13.
Toxicol Appl Pharmacol ; 244(2): 218-25, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20060011

RESUMO

N-acetyl-S-(1,2-dichlorovinyl)-l-cysteine (Ac-DCVC) and S-(1,2-dichlorovinyl)-l-cysteine (DCVC) are the glutathione conjugation pathway metabolites of a common industrial contaminant and potent nephrotoxicant trichloroethylene (TCE). Ac-DCVC and DCVC are accumulated in the renal proximal tubule where they may be secreted into the urine by an unknown apical transporter(s). In this study, we explored the hypothesis that the apical transport of Ac-DCVC and/or DCVC may be mediated by the multidrug resistance associated protein 2 (Mrp2, ABCC2), which is known to mediate proximal tubular apical ATP-dependent transport of glutathione and numerous xenobiotics and endogenous substances conjugated with glutathione. Transport experiments using membrane vesicles prepared from mouse proximal tubule derived cells expressing mouse Mrp2 utilizing ATPase assay and direct measurements of Ac-DCVC/DCVC using liquid chromatography/tandem mass-spectrometry (LC/MS/MS) demonstrated that mouse Mrp2 mediates ATP-dependent transport of Ac-DCVC. Expression of mouse Mrp2 antisense mRNA significantly inhibited the vectorial basolateral to apical transport of Ac-DCVC but not DCVC in mouse proximal tubule derived cells endogenously expressing mouse Mrp2. The results suggest that Mrp2 may be involved in the renal secretion of Ac-DCVC.


Assuntos
Acetilcisteína/análogos & derivados , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Tricloroetileno/farmacocinética , Proteína 2 Associada à Membrana da Vesícula/farmacocinética , Acetilcisteína/farmacocinética , Animais , Transporte Biológico/fisiologia , Células Cultivadas , Túbulos Renais Proximais/metabolismo , Camundongos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo , Tricloroetileno/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética
14.
Biol Sex Differ ; 1(1): 7, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21208471

RESUMO

BACKGROUND: Reproductive functions controlled by the hypothalamus are highly sexually differentiated. One of the most dramatic differences involves estrogen positive feedback, which leads to ovulation. A crucial feature of this positive feedback is the ability of estradiol to facilitate progesterone synthesis in female hypothalamic astrocytes. Conversely, estradiol fails to elevate hypothalamic progesterone levels in male rodents, which lack the estrogen positive feedback-induced luteinizing hormone (LH) surge. To determine whether hypothalamic astrocytes are sexually differentiated, we examined the cellular responses of female and male astrocytes to estradiol stimulation. METHODS: Primary adult hypothalamic astrocyte cultures were established from wild type rats and mice, estrogen receptor-α knockout (ERKO) mice, and four core genotype (FCG) mice, with the sex determining region of the Y chromosome (Sry) deleted and inserted into an autosome. Astrocytes were analyzed for Sry expression with reverse transcription PCR. Responses to estradiol stimulation were tested by measuring free cytoplasmic calcium concentration ([Ca2+]i) with fluo-4 AM, and progesterone synthesis with column chromatography and radioimmunoassay. Membrane estrogen receptor-α (mERα) levels were examined using surface biotinylation and western blotting. RESULTS: Estradiol stimulated both [Ca2+]i release and progesterone synthesis in hypothalamic astrocytes from adult female mice. Male astrocytes had a significantly elevated [Ca2+]i response but it was significantly lower than in females, and progesterone synthesis was not enhanced. Surface biotinylation demonstrated mERα in both female and male astrocytes, but only in female astrocytes did estradiol treatment increase insertion of the receptor into the membrane, a necessary step for maximal [Ca2+]i release. Regardless of the chromosomal sex, estradiol facilitated progesterone synthesis in astrocytes from mice with ovaries (XX and XY-), but not in mice with testes (XY-Sry and XXSry). CONCLUSIONS: Astrocytes are sexually differentiated, and in adulthood reflect the actions of sex steroids during development. The response of hypothalamic astrocytes to estradiol stimulation was determined by the presence or absence of ovaries, regardless of chromosomal sex. The trafficking of mERα in female, but not male, astrocytes further suggests that cell signaling mechanisms are sexually differentiated.

15.
J Neurosci ; 29(48): 15323-30, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19955385

RESUMO

Estradiol has rapid actions in the CNS that are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca(2+)](i)) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERalpha has an extracellular portion. In addition to the full-length ERalpha [apparent molecular weight (MW), 66 kDa], surface biotinylation labeled an ERalpha-immunoreactive protein (MW, approximately 52 kDa) identified by both COOH- and NH(2)-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 and 52 kDa ERalpha. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24-48 h reduced ERalpha levels, suggesting receptor downregulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERalpha-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERalpha trafficking to and from the membrane. Estradiol-induced [Ca(2+)](i) flux was also significantly increased at the time of peak ERalpha activation/internalization. These results demonstrate that ERalpha is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERalpha are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERalpha to augment and then terminate membrane-initiated signaling.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Benzoatos/farmacologia , Biotinilação/métodos , Cálcio/metabolismo , Células Cultivadas , Estradiol/análogos & derivados , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/deficiência , Antagonistas de Aminoácidos Excitatórios/farmacologia , Líquido Extracelular/efeitos dos fármacos , Feminino , Fulvestranto , Glicina/análogos & derivados , Glicina/farmacologia , Hipotálamo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Ratos Long-Evans , Receptores de Glutamato Metabotrópico/metabolismo , Esteroides/metabolismo , Fatores de Tempo
16.
Endocrinology ; 150(3): 1369-76, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18948402

RESUMO

Estradiol, acting on a membrane-associated estrogen receptor-alpha (mERalpha), induces an increase in free cytoplasmic calcium concentration ([Ca(2+)](i)) needed for progesterone synthesis in hypothalamic astrocytes. To determine whether rapid estradiol signaling involves an interaction of mERalpha with metabotropic glutamate receptor type 1a (mGluR1a), changes in [Ca(2+)](i) were monitored with the calcium indicator, Fluo-4 AM, in primary cultures of female postpubertal hypothalamic astrocytes. 17beta-Estradiol over a range of 1 nm to 100 nm induced a maximal increase in [Ca(2+)](i) flux measured as a change in relative fluorescence [DeltaF Ca(2+) = 615 +/- 36 to 641 +/- 47 relative fluorescent units (RFU)], whereas 0.1 nm of estradiol stimulated a moderate [Ca(2+)](i) increase (275 +/- 16 RFU). The rapid estradiol-induced [Ca(2+)](i) flux was blocked with 1 microm of the estrogen receptor antagonist ICI 182,780 (635 +/- 24 vs. 102 +/- 11 RFU, P < 0.001) and 20 nmof the mGluR1a antagonist LY 367385 (617 +/- 35 vs. 133 +/- 20 RFU, P < 0.001). Whereas the mGluR1a receptor agonist (RS)-3,5-dihydroxyphenyl-glycine (50 microm) also stimulated a robust [Ca(2+)](i) flux (626 +/- 23 RFU), combined treatment of estradiol (1 nm) plus (RS)-3,5-dihydroxyphenyl-glycine (50 microm) augmented the [Ca(2+)](i) response (762 +/- 17 RFU) compared with either compound alone (P < 0.001). Coimmunoprecipitation demonstrated a direct physical interaction between mERalpha and mGluR1a in the plasma membrane of hypothalamic astrocytes. These results indicate that mERalpha acts through mGluR1a, and mGluR1a activation facilitates the estradiol response, suggesting that neural activity can modify estradiol-induced membrane signaling in astrocytes.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Hipotálamo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Estradiol/farmacologia , Feminino , Hipotálamo/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ligação Proteica , Ratos , Ratos Long-Evans , Transdução de Sinais/efeitos dos fármacos
17.
Endocrinology ; 149(12): 5934-42, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18653714

RESUMO

Rapid membrane-mediated estradiol signaling regulating sexual receptivity requires the interaction of the estrogen receptor (ER)-alpha and the metabotropic glutamate receptor 1a (mGluR1a). A cell signaling antibody microarray revealed that estradiol activated 42 proteins in the arcuate nucleus of the hypothalamus (ARH). To begin an analysis of various signaling pathways, protein kinase A and protein kinase C (PKC)-theta, whose signaling pathways have been implicated in the estradiol regulation of sexual receptivity, were examined. In the ARH sample, the increase in phospho-protein kinase A could not be confirmed by Western blotting, in either cytosolic or membrane fractions. However, the increase in phosphorylated PKCtheta seen with the pathway array was verified by Western blotting. To study whether rapid estradiol activation of PKC regulates the ARH-medial preoptic nucleus pathway regulating lordosis, mu-opioid receptor (MOR) internalization and lordosis reflex were tested. Blocking PKC in ARH with 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]3-(1H-indol-3-yl) maleimide significantly attenuated estradiol-induced MOR internalization. Furthermore, disruption of PKC signaling within the ARH at the time of estradiol treatment significantly diminished the lordosis reflex. Moreover, blocking PKC prevented MOR internalization when the circuit was activated by the mGluR1a agonist, (RS)-3,5-dihydroxyphenylglycine. Activation of PKC with phorbol 12, 13-dibutyrate induced MOR internalization, indicating that PKC was a critical step for membrane ERalpha-initiated mGluR1a-mediated cell signaling and phorbol 12, 13-dibutyrate significantly facilitated the lordosis reflex. Together these findings indicate that rapid membrane ERalpha-mGluR1a interactions activate PKCtheta cell signaling, which regulates female sexual receptivity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hipotálamo/metabolismo , Proteína Quinase C/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Glicina/análogos & derivados , Glicina/farmacologia , Hipotálamo/efeitos dos fármacos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Masculino , Dibutirato de 12,13-Forbol/farmacologia , Fosfoproteínas/metabolismo , Ratos , Ratos Long-Evans , Receptores de Glutamato Metabotrópico/agonistas , Receptores Opioides mu/metabolismo , Resorcinóis/farmacologia
18.
FEBS Lett ; 581(9): 1898-902, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17434493

RESUMO

Aminoacylase III (AAIII) plays an important role in deacetylation of acetylated amino acids and N-acetylated S-cysteine conjugates of halogenated alkenes and alkanes. AAIII, recently cloned from mouse kidney and partially characterized, is a mixture of tetramers and dimers. In the present work, AAIII dimers were purified and shown to be enzymatically active. Limited trypsinolysis showed two domains of approximately 9 and 25 kDa. The three-dimensional structure of the dimer was studied by electron microscopy of negative stained samples and by single-particle reconstruction. A 16A resolution model of the AAIII dimer was created. It has an unusual, cage-like, structure. A realistic AAIII tetramer model was built from two dimers.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Amidoidrolases/isolamento & purificação , Animais , Catálise , Dimerização , Imageamento Tridimensional , Camundongos , Microscopia Eletrônica , Modelos Moleculares , Tripsina/metabolismo
19.
Drug Metab Dispos ; 35(1): 43-50, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17012540

RESUMO

Trichloroethylene (TCE) and other halogenated alkenes are known environmental contaminants with cytotoxic and nephrotoxic effects, and are potential carcinogens. Their metabolism via the mercapturate metabolic pathway was shown to lead to their detoxification. The final products of this pathway, mercapturic acids or N-acetyl-l-cysteine S-conjugates, are secreted into the lumen in the renal proximal tubule. The proximal tubule may also deacetylate mercapturic acids, and the resulting cysteine S-conjugates are transformed by cysteine S-conjugate beta-lyases to nephrotoxic reactive thiols. The specificity and rate of mercapturic acid deacetylation may determine the toxicity of certain mercapturic acids; however, the exact enzymologic processes involved are not known in detail. In the present study we characterized the kinetics of the recently cloned mouse aminoacylase III (AAIII) toward a wide spectrum of halogenated mercapturic acids and N-acetylated amino acids. In general, the V(max) value of AAIII was significantly larger with chlorinated and brominated mercapturic acids, whereas fluorination significantly decreased it. The enzyme deacetylated mercapturic acids derived from the TCE metabolism including N-acetyl-S-(1,2-dichlorovinyl)-l-cysteine (NA-1,2-DCVC) and N-acetyl-S-(2,2-dichlorovinyl)-l-cysteine (NA-2,2-DCVC). Both mercapturic acids induced cytotoxicity in mouse proximal tubule mPCT cells expressing AAIII, which was decreased by an inhibitor of beta-lyase, aminooxyacetate. The toxic effect of NA-2,2-DCVC was smaller than that of NA-1,2-DCVC, indicating that factors other than the intracellular activity of AAIII mediate the cytotoxicity of these mercapturic acids. Our results indicate that in proximal tubule cells, AAIII plays an important role in deacetylating several halogenated mercapturic acids, and this process may be involved in their cyto- and nephrotoxicity.


Assuntos
Acetilcisteína/metabolismo , Amidoidrolases/metabolismo , Acetilação , Aminoácidos/metabolismo , Animais , Células Cultivadas , Camundongos
20.
J Physiol ; 559(Pt 1): 55-65, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15218065

RESUMO

We have recently shown that carbonic anhydrase II (CAII) binds in vitro to the C-terminus of the electrogenic sodium bicarbonate cotransporter kNBC1 (kNBC1-ct). In the present study we determined the molecular mechanisms for the interaction between the two proteins and whether kNBC1 and CAII form a transport metabolon in vivo wherein bicarbonate is transferred from CAII directly to the cotransporter. Various residues in the C-terminus of kNBC1 were mutated and the effect of these mutations on both the magnitude of CAII binding and the function of kNBC1 expressed in mPCT cells was determined. Two clusters of acidic amino acids, L(958)DDV and D(986)NDD in the wild-type kNBC1-ct involved in CAII binding were identified. In both acidic clusters, the first aspartate residue played a more important role in CAII binding than others. A significant correlation between the magnitude of CAII binding and kNBC1-mediated flux was shown. The results indicated that CAII activity enhances flux through the cotransporter when the enzyme is bound to kNBC1. These data are the first direct evidence that a complex of an electrogenic sodium bicarbonate cotransporter with CAII functions as a transport metabolon.


Assuntos
Anidrase Carbônica II/metabolismo , Túbulos Renais Proximais/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Sequência de Aminoácidos , Animais , Anidrase Carbônica II/genética , Anidrase Carbônica II/fisiologia , Células Cultivadas , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/enzimologia , Camundongos , Dados de Sequência Molecular , Ligação Proteica/genética , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA