Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
ACS Omega ; 9(1): 456-463, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222515

RESUMO

The textile wastewater sludge (TWS) treatment and disposal are environmentally challenging due to toxic organics and metals. At the same time, cattle manure (CM), with better combustion performance, i.e., calorific value and uniform burning capability, is still underutilized in many parts of the world. This study evaluated and assessed the TWS and CM blending compatibility to convert them into fuel pellets for the direct combustion option and to stabilize toxic contaminants in TWS. After initial drying, grinding, and particle size control of the raw TWS and CM, both were blended at different ratios. The blended and nonblended TWS and CM samples were converted into pellets and analyzed for proximate and ultimate analyses, namely, moisture content, fixed carbon, CHNO, gross calorific value (GCV), bulk density, ash content, and metals, to evaluate the efficacy for energy applications. Out of three blended ratios, i.e., 75:25 (W/W%; CM/TWS), 50:50, and 25:75, the 75:25 blended pellet composition was found appropriate for fuel application. For the 75:25 blend, the obtained GCV was 12.77 MJ/kg, elemental carbon was 27.5%, volatiles were 41.7%, and residue ash was 42.8% of the total weight. Moreover, the blending ratios of 75:25 and 50:50 revealed that elemental and metal (Fe, Cu, Zn, Ni, Cr, Na, Mg, Mn) concentrations in TWS were stabilized to below threshold limits in the obtained residue ash for safe handling. The explored methods of TWS and CM waste processing, blending, and pelletization proposed a new technique for their sustainable waste valorization into energy sources.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36678023

RESUMO

A reverse-micelle sol-gel method was chosen for the preparation of Fe-doped TiO2 samples that were employed in the photodegradation of the crystal violet dye under visible light irradiation in a batch reactor. The dopant amount was varied to assess the optimal photocatalyst composition towards the target dye degradation. The photocatalysts were characterized through a multi-technique approach, envisaging XRPD and QPA as obtained by Rietveld refinement, FE-SEM analysis, DR UV-vis spectroscopy, N2 adsorption/desorption isotherms measurement at -196 °C, ζ-potential measurement, and XPS analysis. The physical-chemical characterization showed that the adopted synthesis method allows obtaining NPs with uniform shape and size and promotes the introduction of Fe into the titania matrix, finally affecting the relative amounts of the three occurring polymorphs of TiO2 (anatase, rutile and brookite). By increasing the Fe content, the band gap energy decreases from 3.13 eV (with undoped TiO2) to 2.65 eV (with both 2.5 and 3.5 wt.% nominal Fe contents). At higher Fe content, surface Fe oxo-hydroxide species occur, as shown by DR UV-vis and XP spectroscopies. All the Fe-doped TiO2 photocatalysts were active in the degradation and mineralization of the target dye, showing a TOC removal higher than the undoped sample. The photoactivity under visible light was ascribed both to the band-gap reduction (as confirmed by phenol photodegradation) and to dye sensitization of the photocatalyst surface (as confirmed by photocatalytic tests carried out using different visible-emission spectra LEDs). The main reactive species involved in the dye degradation were determined to be positive holes.

3.
ACS Omega ; 6(38): 24562-24574, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604638

RESUMO

MnO x -TiO2 catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH3-SCR (selective catalytic reduction) of NO x have been synthesized by the reverse micelle-assisted sol-gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount. For comparison, a sample at nominal 10 wt % Mn was obtained by impregnation of the (undoped) TiO2 sample. The catalysts were characterized by using an integrated multitechnique approach, encompassing X-ray diffraction followed by Rietveld refinement, micro-Raman spectroscopy, N2 isotherm measurement at -196 °C, energy-dispersive X-ray analysis, diffuse reflectance UV-vis spectroscopy, temperature-programmed reduction technique, and X-ray photoelectron spectroscopy. The obtained results prove that the reverse micelle sol-gel approach allowed for enhancing the catalytic activity, in that the catalysts were active in a broad temperature range at a substantially low Mn loading, as compared to the impregnated catalyst. Particularly, the 5 wt % Mn catalyst showed the best NH3-SCR activity in terms of both NO x conversion (ca. 90%) and the amount of produced N2O (ca. 50 ppm) in the 200-250 °C temperature range.

4.
Materials (Basel) ; 14(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198890

RESUMO

Fe-doped titania photocatalysts (with 1, 2.5, and 3.5 wt. % Fe nominal content), showing photocatalytic activity under visible light, were prepared by a soft-template assisted sol-gel approach in the presence of the triblock copolymer Pluronic P123. An undoped TiO2 photocatalyst was also prepared for comparison. The photocatalysts were characterized by means of X-ray powder Diffraction (XRPD), Quantitative Phase Analysis as obtained by Rietveld refinement, Diffuse Reflectance (DR) UV-Vis spectroscopy, N2 adsorption/desorption at -196 °C, electrophoretic mobility in water (ζ-potential), and X-ray photoelectron spectroscopy (XPS). The physico-chemical characterization showed that all the samples were 100% anatase phase and that iron was present both in the bulk and at the surface of the Fe-doped TiO2. Indeed, the band gap energy (Eg) decreases with the Fe content, with Tauc's plot determined values ranging from 3.35 (undoped TiO2) to 2.70 eV (3.5 wt. % Fe). Notwithstanding the obtained Eg values, the photocatalytic activity results under visible light highlighted that the optimal Fe content was equal to 2.5 wt. % (Tauc's plot determined Eg = 2.74 eV). With the optimized photocatalyst and in selected operating conditions, under visible light it was possible to achieve 90% AO7 discoloration together with a TOC removal of 40% after 180 min. The kinetic behavior of the photocatalyst was also analyzed. Moreover, the tests in the presence of three different scavengers revealed that the main reactive species are (positive) holes and superoxide species. Finally, the optimized photocatalyst was also able to degrade phenol under visible light.

5.
Nanomaterials (Basel) ; 11(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063431

RESUMO

Benzo(a)pyrene (B(a)P) is a well-known genotoxic agent, the removal of which from environmental matrices is mandatory, necessitating the application of cleaning strategies that are harmless to human and environmental health. The potential application of nanoparticles (NPs) in the remediation of polluted environments is of increasing interest. Here, specifically designed NPs were selected as being non-genotoxic and able to interact with B(a)P, in order to address the genetic and chromosomal damage it produces. A newly formulated pure anatase nano-titanium (nano-TiO2), a commercial mixture of rutile and anatase, and carbon black-derived hydrophilic NPs (HNP) were applied. Once it had been ascertained that the NPs selected for the work did not induce genotoxicity, marine mussel gill biopsies were exposed in vitro to B(a)P (2 µg/mL), alone and in combination with the selected NPs (50 µg/mL nano-TiO2, 10 µg/mL HNP). DNA primary reversible damage was evaluated by means of the Comet assay. Chromosomal persistent damage was assessed on the basis of micronuclei frequency and nuclear abnormalities by means of the Micronucleus-Cytome assay. Transmission Electron Microscopy (TEM) was performed to investigate the mechanism of action exerted by NPs. Pure Anatase n-TiO2 was found to be the most suitable for our purpose, as it is cyto- and genotoxicity free and able to reduce the genetic and chromosomal damage associated with exposure to B(a)P.

6.
ACS Omega ; 6(8): 5379-5388, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681577

RESUMO

Six Mo/TiO2 samples (with 0, 1.0, 2.5, 5.0, 7.5, and 10 wt % Mo nominal contents) were obtained by reverse micelle sol-gel synthesis, followed by calcination at 500 °C. The samples were characterized by means of powder X-ray Diffraction (PXRD), quantitative phase analysis as obtained by Rietveld refinement, field-emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray analysis, N2 adsorption/desorption at -196 °C, X-ray photoelectron spectroscopy, and diffuse reflectance (DR) UV-vis spectroscopy. As a whole, the adopted characterization techniques showed the inclusion of a sizeable Mo amount, without the segregation of any MoO x phase. Specifically, PXRD showed the occurrence of anatase and brookite with all the studied samples; notwithstanding the mild calcination temperature, the formation of rutile occurred at Mo wt % ≥2.5 likely due to the presence of brookite favoring, in turn, anatase to rutile transition. DR UV-vis and XP spectroscopies allowed determining the samples' band gap energy (E g) and valence band energy, respectively, from which the conduction band energy was calculated; and the observed E g value increase at 10 wt % Mo was ascribed to the Moss-Burstein effect.

7.
ChemistryOpen ; 9(9): 903-912, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908812

RESUMO

Different sol-gel synthesis methods were used to obtain four nanostructured mesoporous TiO2 samples for an efficient photocatalytic degradation of the emerging contaminant N-phenylurea under either simulated solar light (1 Sun) or UV light. Particularly, two TiO2 samples were obtained by means of as many template-assisted syntheses, whereas other two TiO2 samples were obtained by a greener template-free procedure, implying acidic conditions and, then, calcination at either 200 °C or 600 °C. In one case, anatase was obtained, whereas in the other three cases mixed crystalline phases were obtained. The four TiO2 samples were characterized by X-ray powder diffraction (followed by Rietveld analysis); Transmission Electron Microscopy; N2 adsorption/desorption at -196 °C; Diffuse Reflectance UV/Vis spectroscopy and ζ-potential measurements. A commercial TiO2 powder (i. e., Degussa P25) was used for comparison. Differences among the synthesized samples were observed not only in their quantitative phase composition, but also in their nanoparticles morphology (shape and size), specific surface area, pore size distribution and pHIEP (pH at isoelectric point), whereas the samples band-gap did not vary sizably. The samples showed different photocatalytic behavior in terms of N-phenylurea degradation, which are ascribed to their different physico-chemical properties and, especially, to their phase composition, stemming from the different synthesis conditions.

8.
Front Chem ; 8: 253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363176

RESUMO

Microwaves (MW) are often the most efficient, in terms of heat exchange and conversion rate, of all the energy sources used to promote chemical reactions thanks to fast volumetric dielectric heating, and metal-catalyzed synthetic reactions under heterogeneous conditions are an eloquent example. We herein report a MW-assisted green protocol for the C-H arylation of thiophenes with substituted aryl halides. This sustainable protocol carried out in γ-valerolactone (GVL) is catalyzed by Pd nanoparticles embedded in cross-linked ß-cyclodextrin. In view of the excellent results achieved with activated substrates, the one-pot synthesis of a 4(3H)-quinazolinone derivative has been accomplished. A pressure-resistant MW reactor, equipped with multiple gas inlets, was used for sequential (i) C-H arylation, (ii) reduction, and (iii) carbonylation in the presence of the same catalyst, but under different gas atmospheres. The robust heterogeneous Pd catalyst showed limited metal leaching in GVL, making this an efficient MW-assisted process with high atom economy.

9.
ChemistryOpen ; 9(5): 599-606, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32440464

RESUMO

Detailed analysis of recently reported variable-temperature IR (VTIR) spectra of carbon monoxide adsorbed in alkaline zeolites shows how, not only the corresponding values of standard adsorption enthalpy ( ΔH0 ) and entropy ( ΔS0 ) can be obtained, but also the thermodynamic values of molar entropy and enthalpy which characterize the adsorbed gas phase. In addition, it is shown that the so obtained molar entropy data can lead to new insights into soft molecular modes, which would be hardly accessible by conventional IR spectroscopic techniques.

10.
Molecules ; 25(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295314

RESUMO

In this work, three novel magnetic metal-ceramic nanocomposites were obtained by thermally treating Fe-exchanged zeolites (either A or X) under reducing atmosphere at relatively mild temperatures (750-800 °C). The so-obtained materials were thoroughly characterized from the point of view of their physico-chemical properties and, then, used as magnetic adsorbents in the separation of the target gene factors V and RNASE and of the Staphylococcus aureus bacteria DNA from human blood. Such results were compared with those obtained by using a top ranking commercial separation system (namely, SiMAG-N-DNA by Chemicell). The results obtained by using the novel magnetic adsorbents were similar to (or even better than) those obtained by using the commercial system, both during manual and automated separations, provided that a proper protocol was adopted. Particularly, the novel magnetic adsorbents showed high sensitivity during tests performed with small volumes of blood. Finally, the feasible production of such magnetic adsorbents by an industrial process was envisaged as well.


Assuntos
Biomarcadores/análise , Biomarcadores/sangue , Fracionamento Químico/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocompostos/química , Zeolitas/química , Fenômenos Químicos , Humanos , Temperatura , Difração de Raios X
11.
Materials (Basel) ; 12(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901826

RESUMO

TiO2 nanoparticles containing 0.0, 1.0, 5.0, and 10.0 wt.% Mo were prepared by a reverse micelle template assisted sol⁻gel method allowing the dispersion of Mo atoms in the TiO2 matrix. Their textural and surface properties were characterized by means of X-ray powder diffraction, micro-Raman spectroscopy, N2 adsorption/desorption isotherms at -196 °C, energy dispersive X-ray analysis coupled to field emission scanning electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV⁻Vis spectroscopy, and ζ-potential measurement. The photocatalytic degradation of Rhodamine B (under visible light and low irradiance) in water was used as a test reaction as well. The ensemble of the obtained experimental results was analyzed in order to discover the actual state of Mo in the final materials, showing the occurrence of both bulk doping and Mo surface species, with progressive segregation of MoOx species occurring only at a higher Mo content.

12.
Molecules ; 22(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914812

RESUMO

The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.


Assuntos
Gases/química , Zeolitas/química , Adsorção , Modelos Moleculares , Estrutura Molecular , Porosidade , Propriedades de Superfície , Temperatura , Termodinâmica
13.
J Biomed Nanotechnol ; 13(3): 337-48, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29381292

RESUMO

In this work, metal-ceramic nanocomposites were obtained through short (up to 2 h) thermal treatments at relatively moderate temperatures (750­800 °C) under a reducing atmosphere, using Fe-exchanged zeolite A as the precursor. The as-obtained materials were characterized by X-ray powder diffraction analysis, N2 adsorption at ­196 °C, and highresolution transmission electron microscopy. The results of these analyses showed that the nanocomposites consisted of a dispersion of metallic Fe nanoparticles within a porous ceramic matrix, mainly based on amorphous silica and alumina. These nanocomposites were magnetically characterized, and their magnetic response was studied. Finally, the obtained metal-ceramic nanocomposite materials were used in the separation of Escherichia coli DNA from a crude cell lysate. The results of the DNA separation experiments showed that the obtained materials could perform this type of separation.


Assuntos
DNA Bacteriano/isolamento & purificação , DNA Bacteriano/efeitos da radiação , Separação Imunomagnética/métodos , Nanocompostos/química , Nanocompostos/ultraestrutura , Ultrafiltração/métodos , Zeolitas/química , DNA Bacteriano/química , Campos Magnéticos , Teste de Materiais , Ligas Metalo-Cerâmicas/química , Nanocompostos/efeitos da radiação , Nanoporos/ultraestrutura , Tamanho da Partícula , Porosidade
14.
J Vis Exp ; (117)2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911418

RESUMO

The goal of the protocol is to synthesize Fe-doped aluminosilicate nanotubes of the imogolite type with the formula (OH)3Al2-xFexO3SiOH. Doping with Fe aims at lowering the band gap of imogolite, an insulator with the chemical formula (OH)3Al2O3SiOH, and at modifying its adsorption properties towards azo-dyes, an important class of organic pollutants of both wastewater and groundwater. Fe-doped nanotubes are obtained in two ways: by direct synthesis, where FeCl3 is added to an aqueous mixture of the Si and Al precursors, and by post-synthesis loading, where preformed nanotubes are put in contact with a FeCl3•6H2O aqueous solution. In both synthesis methods, isomorphic substitution of Al3+ by Fe3+ occurs, preserving the nanotube structure. Isomorphic substitution is indeed limited to a mass fraction of ~1.0% Fe, since at a higher Fe content (i.e., a mass fraction of 1.4% Fe), Fe2O3 clusters form, especially when the loading procedure is adopted. The physicochemical properties of the materials are studied by means of X-ray powder diffraction (XRD), N2 sorption isotherms at -196 °C, high resolution transmission electron microscopy (HRTEM), diffuse reflectance (DR) UV-Vis spectroscopy, and ζ-potential measurements. The most relevant result is the possibility to replace Al3+ ions (located on the outer surface of the nanotubes) by post-synthesis loading on preformed imogolite without perturbing the delicate hydrolysis equilibria occurring during nanotube formation. During the loading procedure, an anionic exchange occurs, where Al3+ ions on the outer surface of the nanotubes are replaced by Fe3+ ions. In Fe-doped aluminosilicate nanotubes, isomorphic substitution of Al3+ by Fe3+ is found to affect the band gap of doped imogolite. Nonetheless, Fe3+ sites on the outer surface of nanotubes are able to coordinate organic moieties, like the azo-dye Acid Orange 7, through a ligand-displacement mechanism occurring in an aqueous solution.


Assuntos
Compostos Férricos , Nanotubos , Elétrons , Microscopia Eletrônica de Transmissão , Difração de Raios X
15.
ACS Appl Mater Interfaces ; 8(48): 32842-32852, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934173

RESUMO

A hybrid aerogel, composed of MoS2 sheets of 1T (distorted octahedral) and 2H (trigonal prismatic) phases, finely mixed with few layers of reduced graphene oxide (rGO) and obtained by means of a facile environment-friendly hydrothermal cosynthesis, is proposed as electrode material for supercapacitors. By electrochemical characterizations in three- and two-electrode configurations and symmetric planar devices, unique results have been obtained, with specific capacitance values up to 416 F g-1 and a highly stable capacitance behavior over 50000 charge-discharge cycles. The in-depth morphological and structural characterizations through field emission scanning electron microscopy, Raman, X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller, and transmission electron microscopy analysis provides the proofs of the unique assembly of such 3D structured matrix. The unpacked MoS2 structure exhibits an excellent distribution of 1T and 2H phase sheets that are highly exposed to interaction with the electrolyte, and so available for surface/near-surface redox reactions, notwithstanding the quite low overall content of MoS2 embedded in the reduced graphene oxide (rGO) matrix. A comparison with other "more conventional" hybrid rGO-MoX2 electrochemically active materials, synthesized in the same conditions, is provided to support the outstanding behavior of the cosynthesized rGO-MoS2.

16.
Materials (Basel) ; 9(4)2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28773419

RESUMO

Manganese oxides (MnOx), being active, inexpensive and low-toxicity materials, are considered promising water oxidation catalysts (WOCs). This work reports the preparation and the physico-chemical and electrochemical characterization of spin-coated (SC) films of commercial Mn2O3, Mn3O4 and MnO2 powders. Spin coating consists of few preparation steps and employs green chemicals (i.e., ethanol, acetic acid, polyethylene oxide and water). To the best of our knowledge, this is the first time SC has been used for the preparation of stable powder-based WOCs electrodes. For comparison, MnOx films were also prepared by means of electrodeposition (ED) and tested under the same conditions, at neutral pH. Particular interest was given to α-Mn2O3-based films, since Mn (III) species play a crucial role in the electrocatalytic oxidation of water. To this end, MnO2-based SC and ED films were calcined at 500 °C, in order to obtain the desired α-Mn2O3 crystalline phase. Electrochemical impedance spectroscopy (EIS) measurements were performed to study both electrode charge transport properties and electrode-electrolyte charge transfer kinetics. Long-term stability tests and oxygen/hydrogen evolution measurements were also made on the highest-performing samples and their faradaic efficiencies were quantified, with results higher than 95% for the Mn2O3 SC film, finally showing that the SC technique proposed here is a simple and reliable method to study the electrocatalytic behavior of pre-synthesized WOCs powders.

17.
Phys Chem Chem Phys ; 17(43): 28950-7, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26456488

RESUMO

The simple means adopted for investigating H-Y zeolite acidity in water is the pH-dependence of the amount of a basic molecule adsorbed under isochoric conditions, a technique capable of yielding, under equilibrium conditions, an estimate of the pKa value of the involved acidic centres: the behaviour with temperature of adsorbed amounts yields instead some information on thermodynamics. Simazine (Sim, 2-chloro-4,6-bis(ethylamino)-s-triazine) was chosen as an adsorbate because its transverse dimension (7.5 Å) is close to the opening of the supercage in the faujasite structure of H-Y (7.4 Å). In short term measurements, Sim adsorption at 25 °C occurs only at the outer surface of H-Y particles. Two types of mildly acidic centres are present (with pKaca. 7 and ca. 8, respectively) and no strong one is observed. Previous adsorption of ammonia from the gas phase discriminates between the two. The former survives, and shows features common with the silanols of amorphous silica. The latter is suppressed: because of this and other features distinguishing this site from silanol species (e.g. the formation of dimeric Sim2H(+) species, favoured by coverage and unfavoured by temperatures of adsorption higher than ambient temperature) a candidate is an Al based site. We propose a Lewis centre coordinating a water molecule, exhibiting acidic properties. This acidic water molecule can be replaced by the stronger base ammonia, also depleting inner strong Brønsted sites. A mechanism for the generation of the two sites from surface Brønsted species is proposed. Long term adsorption measurements at 25 °C already show the onset of the interaction with inner strongly acidic Brønsted sites: because of its size, activation is required for Sim to pass the supercage openings and reach inner acidic sites. When adsorption is run at 40-50 °C, uptake is much larger and increases with temperature. Isochoric measurements suggest a pKa value of ca. 3 compatible with its marked acidic nature, although attainment of equilibrium conditions is questionable. Measurements at 60 °C (both isochors and DRIFT) show the onset of changes at the outer surface brought about by the presence of hot water. Control experiments run with USY (Ultra Stabilized zeolite Y), featuring wormholes and cavities rendering accessible internal sites, show the extensive involvement of internal Brønsted sites already at 25 °C.


Assuntos
Ácidos/química , Zeolitas/química , Adsorção , Concentração de Íons de Hidrogênio , Simazina/química , Propriedades de Superfície , Temperatura , Termodinâmica
18.
Phys Chem Chem Phys ; 17(16): 10774-80, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25811971

RESUMO

The hydrothermal synthesis of a nanosized cobalt doped aluminum phosphate CoAPO-5 (CoAPO-5-N) in a water-surfactant-organic solvent mixture (emulsion method) is reported, along with its physico-chemical characterization and comparison with a sample obtained by conventional synthesis (CoAPO-5-C). Both XRD (X-ray Diffraction) peak widths and FESEM (Field Emission Scanning Electron Microscopy) pictures of CoAPO-5-N are in agreement with a nanoscale structure, although the aggregation of nanoparticles occurred. EDX analysis shows a more homogeneous distribution of cobalt in CoAPO-5-N, not attainable by conventional synthesis. The specific surface area, as measured by nitrogen adsorption at 77 K, shows a limited increase in CoAPO-5-N (242 m(2) g(-1)) with respect to CoAPO-5-C (216 m(2) g(-1)), whereas the external surface area is almost tripled. Such a definite increase in the outer surface of CoAPO-5-N is also evidenced by the fourfold increase in the rate of a reaction only involving the exterior surface of particles, the light-driven oxidation of water by persulfate anions, as activated by the bulky Ru(bipy)3(2+) complex, unable to enter CoAPO-5 micropores. Two new features were also noted, adding to the knowledge of CoAPO-5 systems: (i) tetrahedral Co(3+) species may coordinate ammonia molecules, assuming an octahedral configuration, as determined by UV-vis spectroscopy; (ii) Co(2+) species in trigonal coordination occur, able to coordinate either CO molecules at a low temperature or ammonia (or water) at room temperature, as evidenced by IR and UV-vis spectroscopy, respectively.

19.
Chem Res Toxicol ; 27(7): 1142-54, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24933079

RESUMO

High-aspect-ratio nanomaterials (HARN) (typically, single-walled carbon nanotubes (SWCNT) or multiwalled carbon nanotubes (MWCNT)) impair airway barrier function and are toxic to macrophages. Here, we assess the biological effects of nanotubes of imogolite (INT), a hydrated alumino-silicate [(OH)3Al2O3SiOH] occurring as single-walled NT, on murine macrophages and human airway epithelial cells. Cell viability was assessed with resazurin. RT-PCR was used to study the expression of Nos2 and Arg1, markers of classical or alternative macrophage activation, respectively, and nitrite concentration in the medium was determined to assess NO production. Epithelial barrier integrity was evaluated from the trans-epithelial electrical resistance (TEER). Potential genotoxicity of INT was assessed with comet and cytokinesis-block micronucleus cytome assays. Compared to MWCNT and SWCNT, INT caused much smaller effects on RAW264.7 and MH-S macrophage viability. The incubation of macrophages with INT at doses as high as 120 µg/cm(2) for 72 h did not alter either Nos2 or Arg1 expression nor did it increase NO production, whereas IL6 was induced in RAW264.7 cells but not in MH-S cells. INT did not show any genotoxic effect in RAW264.7 and A549 cells except for a decrease in DNA integrity observed in epithelial A549 cells after treatment with the highest dose (80 µg/cm(2)). No significant change in permeability was recorded in Calu-3 epithelial cell monolayers exposed to INT, whereas comparable doses of both SWCNT and MWCNT lowered TEER. Thus, in spite of their fibrous nature, INT appear not to be markedly toxic for in vitro models of lung-blood barrier cells.


Assuntos
Silicatos de Alumínio/toxicidade , Nanotubos/toxicidade , Silicatos de Alumínio/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Formiatos/química , Radicais Livres/química , Humanos , Peróxido de Hidrogênio/química , Camundongos , Testes para Micronúcleos , Nanotubos/química , Nanotubos de Carbono/toxicidade , Óxido Nítrico/metabolismo
20.
Phys Chem Chem Phys ; 16(15): 7074-82, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24615513

RESUMO

Samples of the activated microporous aluminophosphate Co-APO-5, featuring ca. 20% of Co(3+) cations, when immersed in water evolve molecular oxygen at room temperature in an endothermic process, without the need for either light or a sacrificial reactant. Successive drying of the sample at temperatures around 520 K releases molecular hydrogen, with recovery of the initial conditions. Several hydration-dehydration cycles may be performed without loss of activity, i.e. water is split in a thermal cycle under relatively mild conditions.


Assuntos
Compostos de Alumínio/química , Cobalto/química , Água/química , Óxido de Alumínio/química , Catálise , Fosfatos/química , Porosidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA