Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Cell Rep ; 43(7): 114397, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38935499

RESUMO

With exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-ß-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/ß-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.

2.
Elife ; 122024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661340

RESUMO

Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (knockout [KO]), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low-calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.


Assuntos
Fibronectinas , Camundongos Knockout , Osteócitos , Animais , Feminino , Osteócitos/metabolismo , Masculino , Camundongos , Fibronectinas/metabolismo , Fibronectinas/genética , Fatores Sexuais , Reabsorção Óssea/genética
3.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986762

RESUMO

Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (KO), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.

4.
JBMR Plus ; 7(6): e10746, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283651

RESUMO

The L-enantiomer of ß-aminoisobutyric acid (BAIBA) is secreted by contracted muscle in mice, and exercise increases serum levels in humans. In mice, L-BAIBA reduces bone loss with unloading, but whether it can have a positive effect with loading is unknown. Since synergism can be more easily observed with sub-optimal amounts of factors/stimulation, we sought to determine whether L-BAIBA could potentiate the effects of sub-optimal loading to enhance bone formation. L-BAIBA was provided in drinking water to C57Bl/6 male mice subjected to either 7 N or 8.25 N of sub-optimal unilateral tibial loading for 2 weeks. The combination of 8.25 N and L-BAIBA significantly increased the periosteal mineral apposition rate and bone formation rate compared to loading alone or BAIBA alone. Though L-BAIBA alone had no effect on bone formation, grip strength was increased, suggesting a positive effect on muscle function. Gene expression analysis of the osteocyte-enriched bone showed that the combination of L-BAIBA and 8.25 N induced the expression of loading-responsive genes such as Wnt1, Wnt10b, and the TGFb and BMP signaling pathways. One dramatic change was the downregulation of histone genes in response to sub-optimal loading and/or L-BAIBA. To determine early gene expression, the osteocyte fraction was harvested within 24 hours of loading. A dramatic effect was observed with L-BAIBA and 8.25 N loading as genes were enriched for pathways regulating the extracellular matrix (Chad, Acan, Col9a2), ion channel activity (Scn4b, Scn7a, Cacna1i), and lipid metabolism (Plin1, Plin4, Cidec). Few changes in gene expression were observed with sub-optimal loading or L-BAIBA alone after 24 hours. These results suggest that these signaling pathways are responsible for the synergistic effects between L-BAIBA and sub-optimal loading. Showing that a small muscle factor can enhance the effects of sub-optimal loading of bone may be of relevance for individuals unable to benefit from optimal exercise. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
Calcif Tissue Int ; 113(1): 21-38, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37193929

RESUMO

Maintenance of skeletal health is tightly regulated by osteocytes, osteoblasts, and osteoclasts via coordinated secretion of bone-derived factors, termed osteokines. Disruption of this coordinated process due to aging and metabolic disease promotes loss of bone mass and increased risk of fracture. Indeed, growing evidence demonstrates that metabolic diseases, including type 2 diabetes, liver disease and cancer are accompanied by bone loss and altered osteokine levels. With the persistent prevalence of cancer and the growing epidemic of metabolic disorders, investigations into the role of inter-tissue communication during disease progression are on the rise. While osteokines are imperative for bone homeostasis, work from us and others have identified that osteokines possess endocrine functions, exerting effects on distant tissues including skeletal muscle and liver. In this review we first discuss the prevalence of bone loss and osteokine alterations in patients with type 2 diabetes, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, cirrhosis, and cancer. We then discuss the effects of osteokines in mediating skeletal muscle and liver homeostasis, including RANKL, sclerostin, osteocalcin, FGF23, PGE2, TGF-ß, BMPs, IGF-1 and PTHrP. To better understand how inter-tissue communication contributes to disease progression, it is essential that we include the bone secretome and the systemic roles of osteokines.


Assuntos
Doenças Ósseas Metabólicas , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Osso e Ossos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Densidade Óssea , Doenças Ósseas Metabólicas/metabolismo
6.
Curr Osteoporos Rep ; 21(3): 303-310, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084017

RESUMO

PURPOSE OF THE REVIEW: The purpose of this review is to summarize the role of the osteocyte in muscle atrophy in cancer patients, sarcopenia, spinal cord injury, Duchenne's muscular dystrophy, and other conditions associated with muscle deterioration. RECENT FINDINGS: One type of bone cell, the osteocyte, appears to play a major role in muscle and bone crosstalk, whether physiological or pathological. Osteocytes are cells living within the bone-mineralized matrix. These cells are connected to each other by means of dendrites to create an intricately connected network. The osteocyte network has been shown to respond to different types of stimuli such as mechanical unloading, immobilization, aging, and cancer by producing osteocytes-derived factors. It is now becoming clear that some of these factors including sclerostin, RANKL, TGF-ß, and TNF-α have detrimental effects on skeletal muscle. Bone and muscle not only communicate mechanically but also biochemically. Osteocyte-derived factors appear to contribute to the pathogenesis of muscle disease and could be used as a cellular target for new therapeutic approaches.


Assuntos
Doenças Musculoesqueléticas , Osteócitos , Humanos , Osteócitos/fisiologia , Osso e Ossos , Fator de Crescimento Transformador beta , Doenças Musculoesqueléticas/metabolismo
7.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902150

RESUMO

Calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) regulates bone remodeling through its effects on osteoblasts and osteoclasts. However, its role in osteocytes, the most abundant bone cell type and the master regulator of bone remodeling, remains unknown. Here we report that the conditional deletion of CaMKK2 from osteocytes using Dentine matrix protein 1 (Dmp1)-8kb-Cre mice led to enhanced bone mass only in female mice owing to a suppression of osteoclasts. Conditioned media isolated from female CaMKK2-deficient osteocytes inhibited osteoclast formation and function in in vitro assays, indicating a role for osteocyte-secreted factors. Proteomics analysis revealed significantly higher levels of extracellular calpastatin, a specific inhibitor of calcium-dependent cysteine proteases calpains, in female CaMKK2 null osteocyte conditioned media, compared to media from female control osteocytes. Further, exogenously added non-cell permeable recombinant calpastatin domain I elicited a marked, dose-dependent inhibition of female wild-type osteoclasts and depletion of calpastatin from female CaMKK2-deficient osteocyte conditioned media reversed the inhibition of matrix resorption by osteoclasts. Our findings reveal a novel role for extracellular calpastatin in regulating female osteoclast function and unravel a novel CaMKK2-mediated paracrine mechanism of osteoclast regulation by female osteocytes.


Assuntos
Osteoclastos , Osteócitos , Animais , Feminino , Camundongos , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Meios de Cultivo Condicionados/farmacologia , Osteoclastos/metabolismo , Osteócitos/metabolismo , Caracteres Sexuais
8.
Front Endocrinol (Lausanne) ; 14: 1063083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777346

RESUMO

Introduction: Due to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown. Methods: To this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets. Results: Clustering analysis isolated osteoblast precursors that expressed Tnc, Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1, and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi, Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq using integrative in vitro promoter occupancy via ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed. Conclusion: In sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized.


Assuntos
Insuficiência Renal Crônica , Transcriptoma , Camundongos , Animais , Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Osso Cortical/metabolismo , Insuficiência Renal Crônica/patologia , Proteínas de Membrana/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
9.
Nat Commun ; 13(1): 6648, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333322

RESUMO

The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.


Assuntos
Perda do Osso Alveolar , Osteólise , Osteomielite , Periodontite , Camundongos , Animais , Osteócitos/metabolismo , Osteólise/induzido quimicamente , Osteólise/complicações , Osteólise/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Ligante RANK/metabolismo , Porphyromonas gingivalis/metabolismo , Periodontite/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osteoclastos/metabolismo
10.
Orphanet J Rare Dis ; 17(1): 30, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101067

RESUMO

In recent years, much progress has been made in understanding the mechanisms of bone growth and development over a lifespan, including the crosstalk between muscle and bone, to achieve optimal structure and function. While there have been significant advances in understanding how to help improve and maintain bone health in normal individuals, there is limited knowledge on whether these mechanisms apply or are compromised in pathological states. X-linked hypophosphatemia (XLH) (ORPHA:89936) is a rare, heritable, renal phosphate-wasting disorder. The resultant chronic hypophosphatemia leads to progressive deterioration in musculoskeletal function, including impaired growth, rickets, and limb deformities in children, as well as lifelong osteomalacia with reduced bone quality and impaired muscle structure and function. The clinical manifestations of the disease vary both in presentation and severity in affected individuals, and many of the consequences of childhood defects persist into adulthood, causing significant morbidity that impacts physical function and quality of life. Intervention to restore phosphate levels early in life during the critical stages of skeletal development in children with XLH could optimize growth and may prevent or reduce bone deformities in childhood. A healthier bone structure, together with improved muscle function, can lead to physical activity enhancing musculoskeletal health throughout life. In adults, continued management may help to maintain the positive effects acquired from childhood treatment, thereby slowing or halting disease progression. In this review, we summarize the opinions from members of a working group with expertise in pediatrics, epidemiology, and bone, joint and muscle biology, on potential outcomes for people with XLH, who have been optimally treated from an early age and continue treatment throughout life.


Assuntos
Doenças Ósseas , Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Adolescente , Adulto , Criança , Exercício Físico , Humanos , Qualidade de Vida
12.
J Bone Miner Res ; 37(3): 381-396, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904285

RESUMO

Tumor- and bone-derived soluble factors have been proposed to participate in the alterations of skeletal muscle size and function in cachexia. We previously showed that mice bearing ovarian cancer (OvCa) exhibit cachexia associated with marked bone loss, whereas bone-targeting agents, such as bisphosphonates, are able to preserve muscle mass in animals exposed to anticancer drugs. De-identified CT images and plasma samples from female patients affected with OvCa were used for body composition assessment and quantification of circulating cross-linked C-telopeptide type I (CTX-I) and receptor activator of NF-kB ligand (RANKL), respectively. Female mice bearing ES-2 tumors were used to characterize cancer- and RANKL-associated effects on muscle and bone. Murine C2C12 and human HSMM myotube cultures were used to determine the OvCa- and RANKL-dependent effects on myofiber size. To the extent of isolating new regulators of bone and muscle in cachexia, here we demonstrate that subjects affected with OvCa display evidence of cachexia and increased bone turnover. Similarly, mice carrying OvCa present high RANKL levels. By using in vitro and in vivo experimental models, we found that elevated circulating RANKL is sufficient to cause skeletal muscle atrophy and bone resorption, whereas bone preservation by means of antiresorptive and anti-RANKL treatments concurrently benefit muscle mass and function in cancer cachexia. Altogether, our data contribute to identifying RANKL as a novel therapeutic target for the treatment of musculoskeletal complications associated with RANKL-expressing non-metastatic cancers. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Doenças Ósseas Metabólicas , Neoplasias Ovarianas , Animais , Doenças Ósseas Metabólicas/patologia , Caquexia/complicações , Caquexia/tratamento farmacológico , Feminino , Humanos , Ligantes , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
13.
Curr Osteoporos Rep ; 19(6): 616-625, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773212

RESUMO

PURPOSE OF REVIEW: While the function of osteocytes under physiologic conditions is well defined, their role and involvement in cancer disease remains relatively unexplored, especially in a context of non-bone metastatic cancer. This review will focus on describing the more advanced knowledge regarding the interactions between osteocytes and cancer. RECENT FINDINGS: We will discuss the involvement of osteocytes in the onset and progression of osteosarcoma, with the common bone cancers, as well as the interaction that is established between osteocytes and multiple myeloma. Mechanisms responsible for cancer dissemination to bone, as frequently occur with advanced breast and prostate cancers, will be reviewed. While a role for osteocytes in the stimulation and proliferation of cancer cells has been reported, protective effects of osteocytes against bone colonization have been described as well, thus increasing ambiguity regarding the role of osteocytes in cancer progression and dissemination. Lastly, supporting the idea that skeletal defects can occur also in the absence of direct cancer dissemination or osteolytic lesions directly adjacent to the bone, our recent findings will be presented showing that in the absence of bone metastases, the bone microenvironment and, particularly, osteocytes, can manifest a clear and dramatic response to the distant, non-metastatic tumor. Our observations support new studies to clarify whether treatments designed to preserve the osteocytes can be combined with traditional anticancer therapies, even when bone is not directly affected by tumor growth.


Assuntos
Neoplasias Ósseas/patologia , Osteócitos/fisiologia , Osteossarcoma/patologia , Animais , Neoplasias Ósseas/secundário , Humanos , Camundongos , Osteossarcoma/secundário
14.
Genesis ; 59(10): e23450, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487426

RESUMO

Podoplanin, PDPN, is a mucin-type transmembrane glycoprotein widely expressed in many tissues, including lung, kidney, lymph nodes, and mineralized tissues. Its function is critical for lymphatic formation, differentiation of type I alveolar epithelial lung cells, and for bone response to biomechanical loading. It has previously been shown that Pdpn null mice die at birth due to respiratory failure emphasizing the importance of Pdpn in alveolar lung development. During the course of generation of Pdpn mutant mice, we found that most Pdpn null mice in the 129S6 and C57BL6/J mixed genetic background die at the perinatal stage, similar to previously published studies with Pdpn null mice, while all Pdpn null mice bred with Swiss outbred mice survived. Surviving mutant mice in the 129S6 and C57BL6/J mixed genetic background showed alterations in the osteocyte lacunocanalicular network, especially reduced osteocyte canaliculi in the tibial cortex with increased tibial trabecular bone. However, adult Pdpn null mice in the Swiss outbred background showed no overt differences in their osteocyte lacunocnalicular network, bone density, and no overt differences when challenged with exercise. Together, these data suggest that genetic variations present in the Swiss outbred mice compensate for the loss of function of PDPN in lung, kidney, and bone.


Assuntos
Células Epiteliais Alveolares/metabolismo , Diferenciação Celular/genética , Linfangiogênese/genética , Glicoproteínas de Membrana/genética , Animais , Calcificação Fisiológica/genética , Osso Esponjoso/crescimento & desenvolvimento , Osso Esponjoso/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Rim/crescimento & desenvolvimento , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Linfonodos/crescimento & desenvolvimento , Camundongos , Osteócitos/metabolismo , Tíbia/crescimento & desenvolvimento , Tíbia/metabolismo
15.
Cancer Lett ; 520: 80-90, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34233150

RESUMO

The effects of bone metastatic cancer on the skeleton are well described, whereas less is known regarding the effects of non-metastatic bone cancer on bone. Here we investigated the effects of three non-bone metastatic cancer cachexia models, namely Colon-26 adenocarcinoma (C26), ES-2 ovarian cancer (ES-2), and Lewis lung carcinoma (LLC). Even though C26, ES-2 and LLC tumor growth resulted in comparable weight and muscle loss, the ES-2 and LLC hosts exhibited severe bone loss, whereas only modest bone loss was observed in the C26 bearers, correlating with increased TRAP+ osteoclasts in the femurs of ES-2 and LLC but not C26 hosts. Surprisingly, all three showed increased osteocyte lacunar area indicating osteocytic osteolysis and displayed dramatically increased osteocyte death, as well as empty lacunae. To test whether tumor-secreted factors were responsible for the observed effect, IDG-SW3 osteocyte cells were co-cultured with cancer cells in permeable trans-wells. Apoptosis was observed in the osteocyte cells exposed to all three cancer cell lines suggesting that all tumors were cytotoxic for osteocytes. In addition, the expression of the osteoclastic markers, Acp5, CtsK, Atp6v0d2 and Mmp13, was elevated in IDG-SW3 osteocytes exposed to tumor factors, supporting the in vivo observations of increased lacunar size due to osteocytic osteolysis. For the first time, we describe osteocytic bone destruction and extensive osteocyte cell death in non-bone metastatic cancer. These bone alterations, in conjunction with muscle wasting, may create a musculoskeletal system that is incapable of full recovery upon eradication of tumor. Co-treatment with bone preserving therapies should be considered.


Assuntos
Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Osteoclastos/metabolismo , Osteólise/patologia , Animais , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Catepsina K/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metaloproteinase 13 da Matriz/genética , Camundongos , Metástase Neoplásica , Osteoclastos/patologia , Osteócitos/metabolismo , Osteócitos/patologia , Osteólise/genética , Osteólise/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosfatase Ácida Resistente a Tartarato/genética , ATPases Vacuolares Próton-Translocadoras/genética
16.
Exp Biol Med (Maywood) ; 246(19): 2118-2127, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33899538

RESUMO

Cancer-induced muscle wasting, i.e. cachexia, is associated with different types of cancer such as pancreatic, colorectal, lung, liver, gastric and esophageal. Cachexia affects prognosis and survival in cancer, and it is estimated that it will be the ultimate cause of death for up to 30% of cancer patients. Musculoskeletal alterations are known hallmarks of cancer cachexia, with skeletal muscle atrophy and weakness as the most studied. Recent evidence has shed light on the presence of bone loss in cachectic patients, even in the absence of bone-metastatic disease. In particular, we and others have shown that muscle and bone communicate by exchanging paracrine and endocrine factors, known as myokines and osteokines. This review will focus on describing the role of the most studied myokines, such as myostatin, irisin, the muscle metabolite ß-aminoisobutyric acid, BAIBA, and IL-6, and osteokines, including TGF-ß, osteocalcin, sclerostin, RANKL, PTHrP, FGF23, and the lipid mediator, PGE2 during cancer-induced cachexia. The interplay of muscle and bone factors, together with tumor-derived soluble factors, characterizes a complex clinical scenario in which musculoskeletal alterations are amongst the most debilitating features. Understanding and targeting the "secretome" of cachectic patients will likely represent a promising strategy to preserve bone and muscle during cancer cachexia thereby enhancing recovery.


Assuntos
Caquexia/metabolismo , Neoplasias/metabolismo , Neuropeptídeos/metabolismo , Animais , Osso e Ossos/metabolismo , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo
17.
Calcif Tissue Int ; 109(1): 66-76, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33616712

RESUMO

Osteocyte produced fibroblast growth factor 23 (FGF23) is the key regulator of serum phosphate (Pi) homeostasis. The interplay between parathyroid hormone (PTH), FGF23 and other proteins that regulate FGF23 production and serum Pi levels is complex and incompletely characterised. Evidence suggests that the protein product of the SOST gene, sclerostin (SCL), also a PTH target and also produced by osteocytes, plays a role in FGF23 expression, however the mechanism for this effect is unclear. Part of the problem of understanding the interplay of these mediators is the complex multi-organ system that achieves Pi homeostasis in vivo. In the current study, we sought to address this using a cell line model of the osteocyte, IDG-SW3, known to express FGF23 at both the mRNA and protein levels. In cultures of differentiated IDG-SW3 cells, both PTH1-34 and recombinant human (rh) SCL remarkably induced Fgf23 mRNA expression dose-dependently within 3 h. Both rhPTH1-34 and rhSCL also strongly induced C-terminal FGF23 protein secretion. Secreted intact FGF23 levels remained unchanged, consistent with constitutive post-translational cleavage of FGF23 in this cell model. Both rhPTH1-34 and rhSCL treatments significantly suppressed mRNA levels of Phex, Dmp1 and Enpp1 mRNA, encoding putative negative regulators of FGF23 levels, and induced Galnt3 mRNA expression, encoding N-acetylgalactosaminyl-transferase 3 (GalNAc-T3), which protects FGF23 from furin-like proprotein convertase-mediated cleavage. The effect of both rhPTH1-34 and rhSCL was antagonised by pre-treatment with the NF-κß signalling inhibitors, BAY11 and TPCK. RhSCL also stimulated FGF23 mRNA expression in ex vivo cultures of human bone. These findings provide evidence for the direct regulation of FGF23 expression by sclerostin. Locally expressed sclerostin via the induction of FGF23 in osteocytes thus has the potential to contribute to the regulation of Pi homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Crescimento de Fibroblastos , Osteócitos , Animais , Osso e Ossos , Diferenciação Celular , Fator de Crescimento de Fibroblastos 23 , Humanos , Camundongos
18.
Methods Mol Biol ; 2221: 3-13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32979194

RESUMO

Osteocytes are thought to be the mechanosensors of bone by sensing mechanical loads imposed upon the bone and transmitting these signals to the other bone cells to initiate bone modeling and remodeling. The location of osteocytes deep within bone is ideal for their function. However, this location makes the study of osteocytes in vivo technically difficult. There are several methods for obtaining and culturing primary osteocytes for in vitro experiments and ex vivo observation. In this chapter, several proven methods are discussed including the isolation of avian osteocytes from chicks and osteocytes from calvaria and long bones of young mice. A detailed protocol for the isolation of osteocytes from hypermineralized bone of mature and aged animals is provided. In addition, a modified version of this protocol that can be used to isolate osteocytes from human trabecular bone is described.


Assuntos
Osso Esponjoso/citologia , Técnicas de Cultura de Células/métodos , Osteócitos/citologia , Crânio/citologia , Animais , Células Cultivadas , Galinhas , Humanos , Camundongos
19.
Annu Rev Physiol ; 82: 485-506, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32040934

RESUMO

Osteocytes are an ancient cell, appearing in fossilized skeletal remains of early fish and dinosaurs. Despite its relative high abundance, even in the context of nonskeletal cells, the osteocyte is perhaps among the least studied cells in all of vertebrate biology. Osteocytes are cells embedded in bone, able to modify their surrounding extracellular matrix via specialized molecular remodeling mechanisms that are independent of the bone forming osteoblasts and bone-resorbing osteoclasts. Osteocytes communicate with osteoclasts and osteoblasts via distinct signaling molecules that include the RankL/OPG axis and the Sost/Dkk1/Wnt axis, among others. Osteocytes also extend their influence beyond the local bone environment by functioning as an endocrine cell that controls phosphate reabsorption in the kidney, insulin secretion in the pancreas, and skeletal muscle function. These cells are also finely tuned sensors of mechanical stimulation to coordinate with effector cells to adjust bone mass, size, and shape to conform to mechanical demands.


Assuntos
Osso e Ossos/fisiologia , Osteócitos/fisiologia , Animais , Remodelação Óssea/fisiologia , Osso e Ossos/citologia , Fator de Crescimento de Fibroblastos 23 , Humanos
20.
Biochem Biophys Res Commun ; 523(3): 595-601, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31941604

RESUMO

Iatrogenic external root resorption can become a serious pathological condition with clinical tooth movement. Little is known regarding how cementum responds to mechanical loading in contrast to bone, especially under compressive stress. In the field of bone biology, several studies have established the contribution of sphingosine-1-phosphate (S1P) signaling in bone remodeling, mechanical transduction and homeostasis. As osteocytes and cementocytes share similar morphological and functional characteristics, this study aimed to investigate the mechanotransduction ability of cementocytes and to explore the contribution of S1P signaling under compressive stress induced mechanotransduction. We found that compressive stress inhibited major S1P signaling and promoted the expression of anabolic factors in IDG-CM6 cells, a novel immortalized murine cementocyte cell line. By inhibiting S1P signaling, we verified that S1P signaling played a vital role in regulating the expression of the mechanotransduction factors prostaglandin E2 (PGE2) and ß-catenin, as well as factors responsible for cementogenesis and cementoclastogenesis in IDG-CM6 cells. These results support the hypothesis that cementocytes act as key mechanically responsive cells in cementum, responding to compressive stress and directing local cementum metabolism.


Assuntos
Cemento Dentário/citologia , Lisofosfolipídeos/metabolismo , Mecanotransdução Celular , Transdução de Sinais , Esfingosina/análogos & derivados , Animais , Linhagem Celular , Cemento Dentário/metabolismo , Camundongos , Esfingosina/metabolismo , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA