Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2302985120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782806

RESUMO

Plant morphogenesis is governed by the mechanics of the cell wall-a stiff and thin polymeric box that encloses the cells. The cell wall is a highly dynamic composite material. New cell walls are added during cell division. As the cells continue to grow, the properties of cell walls are modulated to undergo significant changes in shape and size without breakage. Spatial and temporal variations in cell wall mechanical properties have been observed. However, how they relate to cell division remains an outstanding question. Here, we combine time-lapse imaging with local mechanical measurements via atomic force microscopy to systematically map the cell wall's age and growth, with their stiffness. We make use of two systems, Marchantia polymorpha gemmae, and Arabidopsis thaliana leaves. We first characterize the growth and cell division of M. polymorpha gemmae. We then demonstrate that cell division in M. polymorpha gemmae results in the generation of a temporary stiffer and slower-growing new wall. In contrast, this transient phenomenon is absent in A. thaliana leaves. We provide evidence that this different temporal behavior has a direct impact on the local cell geometry via changes in the junction angle. These results are expected to pave the way for developing more realistic plant morphogenetic models and to advance the study into the impact of cell division on tissue growth.


Assuntos
Arabidopsis , Marchantia , Arabidopsis/genética , Marchantia/genética , Folhas de Planta , Parede Celular , Polímeros
2.
Proc Natl Acad Sci U S A ; 119(49): e2201600119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454762

RESUMO

The direction in which a cell divides is set by the orientation of its mitotic spindle and is important for determining cell fate, controlling tissue shape, and maintaining tissue architecture. Divisions parallel to the epithelial plane sustain tissue expansion. By contrast, divisions perpendicular to the plane promote tissue stratification and lead to the loss of epithelial cells from the tissue-an event that has been suggested to promote metastasis. Much is known about the molecular machinery involved in orienting the spindle, but less is known about the contribution of mechanical factors, such as tissue tension, in ensuring spindle orientation in the plane of the epithelium. This is important as epithelia are continuously subjected to mechanical stresses. To explore this further, we subjected suspended epithelial monolayers devoid of extracellular matrix to varying levels of tissue tension to study the orientation of cell divisions relative to the tissue plane. This analysis revealed that lowering tissue tension by compressing epithelial monolayers or by inhibiting myosin contractility increased the frequency of out-of-plane divisions. Reciprocally, increasing tissue tension by elevating cell contractility or by tissue stretching restored accurate in-plane cell divisions. Moreover, a characterization of the geometry of cells within these epithelia suggested that spindles can sense tissue tension through its impact on tension at subcellular surfaces, independently of their shape. Overall, these data suggest that accurate spindle orientation in the plane of the epithelium relies on a threshold level of tension at intercellular junctions.


Assuntos
Células Epiteliais , Junções Intercelulares , Epitélio , Divisão Celular , Matriz Extracelular
3.
Trends Cell Biol ; 32(6): 537-551, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35190218

RESUMO

During development and in adult physiology, living tissues are continuously subjected to mechanical stresses originating either from cellular processes intrinsic to the tissue or from external forces. As a consequence, rupture is a constant risk and can arise as a result of excessive stresses or because of tissue weakening through genetic abnormalities or pathologies. Tissue fracture is a multiscale process involving the unzipping of intercellular adhesions at the molecular scale in response to stresses arising at the tissue or cellular scale that are transmitted to adhesion complexes via the cytoskeleton. In this review we detail experimental characterization and theoretical approaches for understanding the fracture of living tissues at the tissue, cellular, and molecular scales.


Assuntos
Caderinas , Citoesqueleto , Caderinas/genética , Adesão Celular/fisiologia , Humanos , Mecanotransdução Celular/fisiologia , Estresse Mecânico
4.
Methods Mol Biol ; 2147: 31-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840808

RESUMO

Scaffolds are often used in bioengineering to replace damaged tissues. They promote cell ingrowth and provide mechanical support until cells regenerate. Such scaffolds are often made using the additive manufacturing process, given its ability to create complex shapes, affordability, and the potential for patient-specific solutions. The success of the implant is closely related to the match of the scaffold mechanical properties to those of the host tissue. Many biological tissues show properties that vary in space. Therefore, the aim is to manufacture materials with variable properties, commonly referred to as functionally graded materials. Here we present a novel technique used to manufacture porous films with functionally graded properties using 3D printers. Such an approach exploits the control of a process parameter, without any hardware modification. The mechanical properties of the manufactured films have been experimentally tested and analytically characterized.


Assuntos
Membranas Artificiais , Impressão Tridimensional , Linguagens de Programação , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Desenho Assistido por Computador/instrumentação , Humanos , Manufaturas , Fenômenos Mecânicos , Impressão Tridimensional/instrumentação , Próteses e Implantes , Propriedades de Superfície , Engenharia Tecidual/métodos
5.
Methods Cell Biol ; 160: 167-180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32896314

RESUMO

Recently there has been a lot of interest in quantifying mechanical properties and responses to mechanical stress. This type of data can provide insight into how growth is regulated, the processes that enable it to occur and how stresses that build up during development feedback onto development itself. However, quantifying mechanical properties of plant cell walls is difficult as the material is heterogeneous, anisotropic and shows complex time-dependent properties as well as being subject to the complex geometries of plant tissues. It is therefore necessary to have a range of methods to enable the quantification of these properties at different resolutions and time-scales. Here we provide a guide to quantifying mechanical properties in Arabidopsis thaliana hypocotyls using a tensile testing device an automated confocal micro-extensometer (ACME). In contrast to indentation methods, tensile testing provides information on the tissue as a whole and in the plane of the sample. We also detail how to adapt the method to use it for quantifying responses to mechanical stress.


Assuntos
Arabidopsis/citologia , Parede Celular/fisiologia , Técnicas Citológicas/instrumentação , Arabidopsis/crescimento & desenvolvimento , Automação , Fenômenos Biomecânicos , Análise de Dados , Hipocótilo/citologia
6.
Nat Phys ; 15(8): 839-847, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33569083

RESUMO

Epithelial monolayers are one-cell thick tissue sheets that line most of the body surfaces, separating internal and external environments. As part of their function, they must withstand extrinsic mechanical stresses applied at high strain rates. However, little is known about how monolayers respond to mechanical deformations. Here, by subjecting suspended epithelial monolayers to stretch, we find that they dissipate stresses on a minute timescale and that relaxation can be described by a power law with an exponential cut-off at timescales larger than ~10 s. This process involves an increase in monolayer length, pointing to active remodelling of cellular biopolymers at the molecular scale during relaxation. Strikingly, monolayers consisting of tens of thousands of cells relax stress with similar dynamics to single rounded cells and both respond similarly to perturbations of the actomyosin cytoskeleton. By contrast, cell-cell junctional complexes and intermediate filaments do not relax tissue stress, but form stable connections between cells, allowing monolayers to behave rheologically as single cells. Taken together our data show that actomyosin dynamics governs the rheological properties of epithelial monolayers, dissipating applied stresses, and enabling changes in monolayer length.

7.
Front Physiol ; 9: 1449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498449

RESUMO

The rapidly growing field of mechanobiology demands for robust and reproducible characterization of cell mechanical properties. Recent achievements in understanding the mechanical regulation of cell fate largely rely on technological platforms capable of probing the mechanical response of living cells and their physico-chemical interaction with the microenvironment. Besides the established family of atomic force microscopy (AFM) based methods, other approaches include optical, magnetic, and acoustic tweezers, as well as sensing substrates that take advantage of biomaterials chemistry and microfabrication techniques. In this review, we introduce the available methods with an emphasis on the most recent advances, and we discuss the challenges associated with their implementation.

8.
Elife ; 72018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29966587

RESUMO

Matrix stiffening with downstream activation of mechanosensitive pathways is strongly implicated in progressive fibrosis; however, pathologic changes in extracellular matrix (ECM) that initiate mechano-homeostasis dysregulation are not defined in human disease. By integrated multiscale biomechanical and biological analyses of idiopathic pulmonary fibrosis lung tissue, we identify that increased tissue stiffness is a function of dysregulated post-translational collagen cross-linking rather than any collagen concentration increase whilst at the nanometre-scale collagen fibrils are structurally and functionally abnormal with increased stiffness, reduced swelling ratio, and reduced diameter. In ex vivo and animal models of lung fibrosis, dual inhibition of lysyl oxidase-like (LOXL) 2 and LOXL3 was sufficient to normalise collagen fibrillogenesis, reduce tissue stiffness, and improve lung function in vivo. Thus, in human fibrosis, altered collagen architecture is a key determinant of abnormal ECM structure-function, and inhibition of pyridinoline cross-linking can maintain mechano-homeostasis to limit the self-sustaining effects of ECM on progressive fibrosis.


Assuntos
Aminoácido Oxirredutases/antagonistas & inibidores , Colágeno/química , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/química , Fibrose Pulmonar/tratamento farmacológico , Reticulina/química , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Aminoácidos/química , Animais , Fenômenos Biomecânicos , Estudos de Casos e Controles , Colágeno/metabolismo , Colágeno/ultraestrutura , Reagentes de Ligações Cruzadas/química , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica , Homeostase/genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Mecanotransdução Celular , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/antagonistas & inibidores , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Proteína-Lisina 6-Oxidase , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Reticulina/metabolismo , Reticulina/ultraestrutura , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-29851194

RESUMO

OBJECTIVE: Studies exploring the incidence and impact of the psychomotor subtypes of postoperative delirium (POD) on the survival of hip fracture patients are few, and results are inconsistent. We sought to assess the incidence of POD subtypes and their impact, in addition to delirium duration, on 6-month mortality in older patients after hip-fracture surgery. METHODS: This is a prospective study involving 571 individuals admitted to an Orthogeriatric Unit within a 5-year period with a diagnosis of hip fracture. Survival status was assessed 6 months after posthip fracture surgery. Postoperative delirium was diagnosed using the Diagnostic and Statistical Manual of Mental Disorders. Postoperative delirium subtypes were classified according to Lipowski's criteria. Cox regressions were used to evaluate the associations between POD subtypes, POD duration, and 6-month mortality, adjusting for covariates. RESULTS: The incidence of psychomotor POD subtypes was hypoactive 57 (10.0%), hyperactive 84 (14.7%), and mixed 79 (13.8%). Six-month mortality rates were 8.3%, 10.7%, 36.8%, and 29.1% in the no-delirium, hyperactive, hypoactive, and mixed-delirium subgroups, respectively. In adjusted models, the hypoactive subgroup (Hazard Ratio, HR = 3.14, 95% Confidence Intervals, CI, 1.63-6.04) and mixed subgroup (HR = 2.89, 95% CI, 1.49-5.62) showed high mortality rates and a significantly increased risk of mortality associated with POD duration as well. CONCLUSIONS: Hyperactive delirium was the most common POD psychomotor subtype, but hypoactive and mixed POD were associated with 6-month mortality risk. Moreover, the risk of death 6 months after surgery increased for both subgroups (hypoactive and mixed) with increasing duration of POD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA