Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biotechnol ; 222: 1-8, 2016 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-26826510

RESUMO

Kinetic models have a great potential for metabolic engineering applications. They can be used for testing which genetic and regulatory modifications can increase the production of metabolites of interest, while simultaneously monitoring other key functions of the host organism. This work presents a methodology for increasing productivity in biotechnological processes exploiting dynamic models. It uses multi-objective dynamic optimization to identify the combination of targets (enzymatic modifications) and the degree of up- or down-regulation that must be performed in order to optimize a set of pre-defined performance metrics subject to process constraints. The capabilities of the approach are demonstrated on a realistic and computationally challenging application: a large-scale metabolic model of Chinese Hamster Ovary cells (CHO), which are used for antibody production in a fed-batch process. The proposed methodology manages to provide a sustained and robust growth in CHO cells, increasing productivity while simultaneously increasing biomass production, product titer, and keeping the concentrations of lactate and ammonia at low values. The approach presented here can be used for optimizing metabolic models by finding the best combination of targets and their optimal level of up/down-regulation. Furthermore, it can accommodate additional trade-offs and constraints with great flexibility.


Assuntos
Biotecnologia/métodos , Engenharia Metabólica/métodos , Modelos Biológicos , Animais , Anticorpos/metabolismo , Células CHO , Cricetinae , Cricetulus , Cinética , Redes e Vias Metabólicas , Projetos de Pesquisa
2.
BMC Syst Biol ; 9: 8, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25880925

RESUMO

BACKGROUND: Dynamic modelling is one of the cornerstones of systems biology. Many research efforts are currently being invested in the development and exploitation of large-scale kinetic models. The associated problems of parameter estimation (model calibration) and optimal experimental design are particularly challenging. The community has already developed many methods and software packages which aim to facilitate these tasks. However, there is a lack of suitable benchmark problems which allow a fair and systematic evaluation and comparison of these contributions. RESULTS: Here we present BioPreDyn-bench, a set of challenging parameter estimation problems which aspire to serve as reference test cases in this area. This set comprises six problems including medium and large-scale kinetic models of the bacterium E. coli, baker's yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network. The level of description includes metabolism, transcription, signal transduction, and development. For each problem we provide (i) a basic description and formulation, (ii) implementations ready-to-run in several formats, (iii) computational results obtained with specific solvers, (iv) a basic analysis and interpretation. CONCLUSIONS: This suite of benchmark problems can be readily used to evaluate and compare parameter estimation methods. Further, it can also be used to build test problems for sensitivity and identifiability analysis, model reduction and optimal experimental design methods. The suite, including codes and documentation, can be freely downloaded from the BioPreDyn-bench website, https://sites.google.com/site/biopredynbenchmarks/ .


Assuntos
Algoritmos , Modelos Biológicos , Biologia de Sistemas/métodos , Animais , Benchmarking , Células CHO , Carbono/metabolismo , Cricetinae , Cricetulus , Drosophila melanogaster/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Genômica , Cinética , Saccharomyces cerevisiae/genética , Transdução de Sinais , Software , Transcrição Gênica
3.
Comput Methods Programs Biomed ; 119(1): 17-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25716416

RESUMO

Mathematical models that predict the complex dynamic behaviour of cellular networks are fundamental in systems biology, and provide an important basis for biomedical and biotechnological applications. However, obtaining reliable predictions from large-scale dynamic models is commonly a challenging task due to lack of identifiability. The present work addresses this challenge by presenting a methodology for obtaining high-confidence predictions from dynamic models using time-series data. First, to preserve the complex behaviour of the network while reducing the number of estimated parameters, model parameters are combined in sets of meta-parameters, which are obtained from correlations between biochemical reaction rates and between concentrations of the chemical species. Next, an ensemble of models with different parameterizations is constructed and calibrated. Finally, the ensemble is used for assessing the reliability of model predictions by defining a measure of convergence of model outputs (consensus) that is used as an indicator of confidence. We report results of computational tests carried out on a metabolic model of Chinese Hamster Ovary (CHO) cells, which are used for recombinant protein production. Using noisy simulated data, we find that the aggregated ensemble predictions are on average more accurate than the predictions of individual ensemble models. Furthermore, ensemble predictions with high consensus are statistically more accurate than ensemble predictions with large variance. The procedure provides quantitative estimates of the confidence in model predictions and enables the analysis of sufficiently complex networks as required for practical applications.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Animais , Células CHO , Biologia Computacional , Cricetinae , Cricetulus , Fermentação , Cinética , Redes e Vias Metabólicas , Proteínas Recombinantes/biossíntese , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA