Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Top Curr Chem (Cham) ; 382(3): 24, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971884

RESUMO

Bioorthogonal click chemistry has played a transformative role in many research fields, including chemistry, biology, and medicine. Click reactions are crucial to produce increasingly complex bioconjugates, to visualize and manipulate biomolecules in living systems and for various applications in bioengineering and drug delivery. As biological (model) systems grow more complex, researchers have an increasing need for using multiple orthogonal click reactions simultaneously. In this review, we will introduce the most common bioorthogonal reactions and discuss their orthogonal use on the basis of their mechanism and electronic or steric tuning. We provide an overview of strategies to create reaction orthogonality and show recent examples of mutual orthogonal chemistry used for simultaneous biomolecule labeling. We end by discussing some considerations for the type of chemistry needed for labeling biomolecules in a system of choice.


Assuntos
Química Click , Proteínas/química
2.
Rheumatology (Oxford) ; 63(3): 608-618, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788083

RESUMO

Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.


Assuntos
Osteoartrite , Receptor 4 Toll-Like , Humanos , Inflamação , Transdução de Sinais , Alarminas
3.
Glycobiology ; 33(9): 732-744, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498177

RESUMO

Glycans play a pivotal role in biology. However, because of the low-affinity of glycan-protein interactions, many interaction pairs remain unknown. Two important glycoproteins involved in B-cell biology are the B-cell receptor and its secreted counterpart, antibodies. It has been indicated that glycans expressed by these B-cell-specific molecules can modulate immune activation via glycan-binding proteins. In several autoimmune diseases, an increased prevalence of variable domain glycosylation of IgG autoantibodies has been observed. Especially, the hallmarking autoantibodies in rheumatoid arthritis, anti-citrullinated protein antibodies, carry a substantial amount of variable domain glycans. The variable domain glycans expressed by these autoantibodies are N-linked, complex-type, and α2-6 sialylated, and B-cell receptors carrying variable domain glycans have been hypothesized to promote selection of autoreactive B cells via interactions with glycan-binding proteins. Here, we use the anti-citrullinated protein antibody response as a prototype to study potential in solution and in situ B-cell receptor-variable domain glycan interactors. We employed SiaDAz, a UV-activatable sialic acid analog carrying a diazirine moiety that can form covalent bonds with proximal glycan-binding proteins. We show, using oligosaccharide engineering, that SiaDAz can be readily incorporated into variable domain glycans of both antibodies and B-cell receptors. Our data show that antibody variable domain glycans are able to interact with inhibitory receptor, CD22. Interestingly, although we did not detect this interaction on the cell surface, we captured CD79 ß glycan-B-cell receptor interactions. These results show the utility of combining photoaffinity labeling and oligosaccharide engineering for identifying antibody and B-cell receptor interactions and indicate that variable domain glycans appear not to be lectin cis ligands in our tested conditions.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Autoanticorpos , Polissacarídeos/química , Oligossacarídeos/metabolismo
4.
Nat Commun ; 14(1): 3367, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291115

RESUMO

Profiling the nascent cellular proteome and capturing early proteomic changes in response to external stimuli provides valuable insights into cellular physiology. Existing metabolic protein labeling approaches based on bioorthogonal methionine- or puromycin analogs allow for the selective visualization and enrichment of newly synthesized proteins. However, their applications are limited as they often require methionine-free conditions, auxotrophic cells and/or are toxic to cells. Here, we introduce THRONCAT, a threonine-derived non-canonical amino acid tagging method based on the bioorthogonal threonine analog ß-ethynylserine (ßES) that enables efficient labeling of the nascent proteome in complete growth media within minutes. We use THRONCAT for the visualization and enrichment of nascent proteins in bacteria, mammalian cells and Drosophila melanogaster. We profile immediate proteome dynamics of B-cells in response to B-cell receptor activation simply by adding ßES to the culture medium, demonstrating the ease-of-use of the method and its potential to address diverse biological questions. In addition, using a Drosophila model of Charcot-Marie-Tooth peripheral neuropathy, we show that THRONCAT enables visualization and quantification of relative protein synthesis rates in specific cell types in vivo.


Assuntos
Proteoma , Treonina , Animais , Proteoma/metabolismo , Drosophila melanogaster/metabolismo , Proteômica , Aminoácidos/metabolismo , Metionina/metabolismo , Mamíferos/metabolismo
5.
J Mol Biol ; 435(13): 168139, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146746

RESUMO

Small heat shock proteins (sHSPs) are essential ATP-independent chaperones that protect the cellular proteome. These proteins assemble into polydisperse oligomeric structures, the composition of which dramatically affects their chaperone activity. The biomolecular consequences of variations in sHSP ratios, especially inside living cells, remain elusive. Here, we study the consequences of altering the relative expression levels of HspB2 and HspB3 in HEK293T cells. These chaperones are partners in a hetero-oligomeric complex, and genetic mutations that abolish their mutual interaction are associated with myopathic disorders. HspB2 displays three distinct phenotypes when co-expressed with HspB3 at varying ratios. Expression of HspB2 alone leads to formation of liquid nuclear condensates, while shifting the stoichiometry towards HspB3 resulted in the formation of large solid-like aggregates. Only cells co-expressing HspB2 with a limited amount of HspB3 formed fully soluble complexes that were distributed homogeneously throughout the nucleus. Strikingly, both condensates and aggregates were reversible, as shifting the HspB2:HspB3 balance in situ resulted in dissolution of these structures. To uncover the molecular composition of HspB2 condensates and aggregates, we used APEX-mediated proximity labelling. Most proteins interact transiently with the condensates and were neither enriched nor depleted in these cells. In contrast, we found that HspB2:HspB3 aggregates sequestered several disordered proteins and autophagy factors, suggesting that the cell is actively attempting to clear these aggregates. This study presents a striking example of how changes in the relative expression levels of interacting proteins affects their phase behavior. Our approach could be applied to study the role of protein stoichiometry and the influence of client binding on phase behavior in other biomolecular condensates and aggregates.


Assuntos
Proteínas de Choque Térmico Pequenas , Proteínas de Choque Térmico , Humanos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Células HEK293 , Proteínas de Choque Térmico HSP27/química , Núcleo Celular/metabolismo , Agregados Proteicos
6.
Chemistry ; 29(6): e202203375, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36478614

RESUMO

The click reaction between a functionalized trans-cyclooctene (TCO) and a tetrazine (Tz) is a compelling method for bioorthogonal conjugation in combination with payload releasing capabilities. However, the synthesis of difunctionalized TCOs remains challenging. As a result, these compounds are poorly accessible, which impedes the development of novel applications. In this work, the scalable and accessible synthesis of a new bioorthogonal difunctionalized TCO is reported in only four single selective high yielding steps starting from commercially available compounds. The TCO-Tz click reaction was assessed and revealed excellent kinetic rates and subsequently payload release was shown with various functionalized derivatives. Tetrazine triggered release of carbonate and carbamate payloads was demonstrated up to 100 % release efficiency and local drug release was shown in a cellular toxicity study which revealed a >20-fold increase in cytotoxicity.

7.
ACS Biomater Sci Eng ; 8(4): 1486-1493, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35259296

RESUMO

Multivalent scaffolds that carry multiple molecules with immunophenotyping or immunomodulatory properties are invaluable tools for studying and modulating specific functions of human immune responses. So far, streptavidin-biotin-based tetramers have been widely used for B-cell immunophenotyping purposes. However, the utility of these tetramers is limited by their tetravalency, the inherent immunogenicity of streptavidin (a bacterial protein that can potentially be recognized by B cells), and the limited feasibility to functionalize these reagents. This has rendered tetramers suboptimal for studying rare, in particular, antigen-specific B-cell populations in the context of clinical applications. Here, we used polyisocyanopeptides (PICs), multivalent polymeric scaffolds functionalized with around 50 peptide antigens, to detect autoreactive B cells in the peripheral blood of patients with rheumatoid arthritis. To explore the potential immunomodulatory functionalities, we functionalized PICs with autoantigenic peptides and a trisaccharide CD22 ligand to inhibit autoreactive B-cell activation through interference with the B-cell receptor activation pathway, as evidenced by reduced phospho-Syk expression upon PIC binding. Given the possibilities to functionalize PICs, our data demonstrate that the modular and versatile character of PIC scaffolds makes them promising candidates for future clinical applications in B-cell-mediated diseases.


Assuntos
Artrite Reumatoide , Polímeros , Autoantígenos , Linfócitos B , Humanos , Peptídeos , Estreptavidina
8.
Org Biomol Chem ; 19(13): 2856-2870, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33725048

RESUMO

Bacterial infections are still one of the leading causes of death worldwide; despite the near-ubiquitous availability of antibiotics. With antibiotic resistance on the rise, there is an urgent need for novel classes of antibiotic drugs. One particularly troublesome class of bacteria are those that have evolved highly efficacious mechanisms for surviving inside the host. These contribute to their virulence by immune evasion, and make them harder to treat with antibiotics due to their residence inside intracellular membrane-limited compartments. This has sparked the development of new chemical reporter molecules and bioorthogonal probes that can be metabolically incorporated into bacteria to provide insights into their activity status. In this review, we provide an overview of several classes of metabolic labeling probes capable of targeting either the peptidoglycan cell wall, the mycomembrane of mycobacteria and corynebacteria, or specific bacterial proteins. In addition, we highlight several important insights that have been made using these metabolic labeling probes.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Corynebacterium/metabolismo , Mycobacterium/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/química , Parede Celular/química , Corynebacterium/química , Interações Hospedeiro-Patógeno , Humanos , Conformação Molecular , Mycobacterium/química , Peptidoglicano/química
9.
Bioconjug Chem ; 32(2): 301-310, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33476135

RESUMO

Functionalized antibodies and antibody fragments have found applications in the fields of biomedical imaging, theranostics, and antibody-drug conjugates (ADC). In addition, therapeutic and theranostic approaches benefit from the possibility to deliver more than one type of cargo to target cells, further challenging stochastic labeling strategies. Thus, bioconjugation methods to reproducibly obtain defined homogeneous conjugates bearing multiple different cargo molecules, without compromising target affinity, are in demand. Here, we describe a straightforward CRISPR/Cas9-based strategy to rapidly engineer hybridoma cells to secrete Fab' fragments bearing two distinct site-specific labeling motifs, which can be separately modified by two different sortase A mutants. We show that sequential genetic editing of the heavy chain (HC) and light chain (LC) loci enables the generation of a stable cell line that secretes a dual tagged Fab' molecule (DTFab'), which can be easily isolated. To demonstrate feasibility, we functionalized the DTFab' with two distinct cargos in a site-specific manner. This technology platform will be valuable in the development of multimodal imaging agents, theranostics, and next-generation ADCs.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Hibridomas/química , Fragmentos Fab das Imunoglobulinas/química , Anticorpos Monoclonais/química , Imunoconjugados/química , Processos Estocásticos
10.
Curr Opin Chem Biol ; 60: 79-88, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33152604

RESUMO

The emergence of bioorthogonal reactions has greatly advanced research in the fields of biology and medicine. They are not only valuable for labeling, tracking, and understanding biomolecules within living organisms, but also important for constructing advanced bioengineering and drug delivery systems. As the systems studied are increasingly complex, the simultaneous use of multiple bioorthogonal reactions is equally desirable. In this review, we take a look at the different bioorthogonal reactions that have recently been developed, the methods of cellular incorporation and the strategies to create orthogonality within the bioorthogonal landscape.


Assuntos
Biologia/métodos , Descoberta de Drogas
11.
Molecules ; 25(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352858

RESUMO

Activity-based protein profiling (ABPP) is a powerful technique to label and detect active enzyme species within cell lysates, cells, or whole animals. In the last two decades, a wide variety of applications and experimental read-out techniques have been pursued in order to increase our understanding of physiological and pathological processes, to identify novel drug targets, to evaluate selectivity of drugs, and to image probe targets in cells. Bioorthogonal chemistry has substantially contributed to the field of ABPP, as it allows the introduction of tags, which may be bulky or have unfavorable physicochemical properties, at a late stage in the experiment. In this review, we give an overview of the bioorthogonal reactions that have been implemented in ABPP, provide examples of applications of bioorthogonal chemistry in ABPP, and share some thoughts on future directions.


Assuntos
Enzimas/metabolismo , Corantes Fluorescentes/química , Animais , Enzimas/química , Humanos , Estrutura Molecular
12.
RSC Chem Biol ; 1(4): 192-203, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458758

RESUMO

An important hurdle for the intracellular delivery of large cargo is the cellular membrane, which protects the cell from exogenous substances. Cell-penetrating peptides (CPPs) can cross this barrier but their use as drug delivery vehicles is hampered by their lack of cell type specificity. Over the past years, several approaches have been explored to control the activity of CPPs that can be primed for cellular uptake. Since the first report on such activatable CPPs (ACPPs) in 2004, various methods of activation have been developed. Here, we provide an overview of the different ACPPs strategies known to date and summarize the benefits, drawbacks, and future directions.

13.
Org Biomol Chem ; 17(39): 8816-8821, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31553012

RESUMO

Bioorthogonal reactions can be performed selectively in the presence of any biological functional group and are widely used to achieve site-selective chemical modifications of biomolecules. The click-to-release reaction is a bioorthogonal bond-cleavage variant that has gained much interest over the last few years. The bioorthogonal reaction between tetrazines and trans-cyclooctenes or vinyl ethers, for example, initiates the release of a small molecule immediately after the cycloaddition with tetrazines. Recently, our group reported that vinylboronic acids (VBAs) give exceptionally high reaction rates in the bioorthogonal inverse electron-demand Diels-Alder reaction with tetrazines that are substituted with boron-coordinating ligands. In the present study, we show that VBAs can be used in a click-to-release variant and demonstrate its bioorthogonality with a VBA-protected doxorubicin prodrug. We show that the cytotoxicity of doxorubicin is silenced by the attachment of the VBA, and activity can be largely restored upon the reaction with a tetrazine, inducing cell death.

14.
Chem Sci ; 10(3): 701-705, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30746105

RESUMO

Cell-penetrating peptides are able to transport a wide variety of cargo across cell membranes. Although promising, they are not often considered for therapeutic purposes as they lack controllable activity and cell selectivity. We have developed an activation strategy based on a split octa-arginine cell-penetrating peptide (CPP) that can be activated by means of bioorthogonal ligation. To this end we prepared two non-penetrating tetra-arginine halves, functionalized either with a tetrazine or with a complementary bicyclo[6.1.0]nonyne (BCN) group. We demonstrate that an active octa-arginine can be reconstituted in situ upon mixing the complementary split peptides. The resulting activated peptide is taken up as efficiently as the well-established cell-penetrating peptide octa-arginine. The activation of the oligo-arginines can also be achieved using trans-cyclooctene (TCO) as a ligation partner, while norbornene appears too kinetically slow for use in situ. We further show that this strategy can be applied successfully to transport a large protein into living cells. Our results validate a promising first step in achieving control over cell penetration and to use CPPs for therapeutic approaches.

16.
Mol Pharm ; 15(12): 5565-5573, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30289723

RESUMO

Autoreactive B cells are thought to play a pivotal role in many autoimmune diseases. Rheumatoid arthritis (RA) is an autoimmune disease affecting ∼1% of the Western population and is hallmarked by the presence of anticitrullinated proteins antibodies (ACPA) produced by autoreactive B cells. We intend to develop a method to target and selectively eliminate these autoreactive B cells using a sequential antigen prodrug targeting strategy. As ACPA-expressing B cells are thought to play essential roles in RA-disease pathogenesis, we used this B cell response as a prototype to analyze the feasibility to generate a construct consisting of a biologically silenced, that is, blocked, antigen connected to a cytotoxic prodrug. Blocking of the antigen is considered relevant as it is anticipated that circulating autoantibodies will otherwise clear the antigen-prodrug before it can reach the target cell. The antigen-prodrug can only bind to the autoantigen-specific B cell receptor (BCR) upon enzymatic removal of the blocking group in close proximity of the B cell surface. BCR binding ultimately induces antigen-specific cytotoxicity after internalization of the antigen. We have synthesized a cyclic citrullinated peptide (CCP) antigen suitable for BCR binding and demonstrated that binding by ACPA was impaired upon introduction of a carboxy- p-nitrobenzyl (CNBz) blocking group at the side chain of the citrulline residue. Enzymatic removal of the CNBz moiety by nitroreductase fully restored citrulline-specific recognition by both ACPA and ACPA-expressing B cells and showed targeted cell death of CCP-recognizing B cells only. These results mark an important step toward antigen-specific B cell targeting in general and more specifically in RA, as successful blocking and activation of citrullinated antigens forms the basis for subsequent use of such construct as a prodrug in the context of autoimmune diseases.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Linfócitos B/efeitos dos fármacos , Epitopos de Linfócito B/administração & dosagem , Peptídeos Cíclicos/imunologia , Pró-Fármacos/administração & dosagem , Anticorpos Antiproteína Citrulinada/imunologia , Anticorpos Antiproteína Citrulinada/metabolismo , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Epitopos de Linfócito B/química , Estudos de Viabilidade , Humanos , Terapia de Alvo Molecular/métodos , Pró-Fármacos/química , Receptores de Antígenos de Linfócitos B/antagonistas & inibidores , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo
17.
Bioconjug Chem ; 29(9): 3054-3059, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30080405

RESUMO

Bioorthogonal reactions are selective transformations that are not affected by any biological functional group and are widely used for chemical modification of biomolecules. Recently, we reported that vinylboronic acids (VBAs) gave exceptionally high reaction rates in the bioorthogonal inverse electron-demand Diels-Alder (iEDDA) reaction with tetrazines bearing a boron-coordinating pyridyl moiety compared to tetrazines lacking such a substituent. In this integrated experimental and theoretical study, we show how the reaction rate of the VBA-tetrazine ligation can be accelerated by shifting the equilibrium from boronic acid to the boronate anion in the reaction mixture. Quantum chemical activation strain analyses reveal that this rate enhancement is a direct consequence of the excellent electron-donating capability of the boronate anion in which the π HOMO is pushed to a higher energy due to the net negative potential of this species. We have explored the second-order rate constants of several tetrazines containing potential VBA-coordinating hydroxyl substituents. We observed an increase in rate constants of several orders of magnitude compared to the tetrazines lacking a hydroxyl substituent. Furthermore, we find the hydroxyl-substituted tetrazines to be more selective toward VBAs than toward the commonly used bioorthogonal reactant norbornene, and more stable in aqueous environment than the previously studied tetrazines containing a pyridyl substituent.


Assuntos
Ácidos Borônicos/química , Compostos Heterocíclicos/química , Reação de Cicloadição , Teoria da Densidade Funcional , Elétrons , Concentração de Íons de Hidrogênio , Cinética
18.
ACS Chem Biol ; 13(8): 1932-1937, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29851463

RESUMO

Mapping proteins at a specific subcellular location is essential to gaining detailed insight on local protein dynamics. We have developed an enzymatic strategy to label proteins on a subcellular level using arylamine N-acetyltransferase (NAT). The NAT enzyme activates an arylhydroxamic acid functionality into a nitrenium ion that reacts fast, covalently, and under neutral conditions with nucleophilic residues of neighboring proteins. The electron density on the aromatic ring proved important for probe activation as strong labeling was only observed with an arylhydroxamic acid bearing an electron donating substituent. We further demonstrate that, using this electron rich arylhydroxamic acid, clear labeling was achieved on a subcellular level in living cells that were transfected with a genetically targeted NAT to the nucleus or the cytosol.


Assuntos
Acetanilidas/química , Arilamina N-Acetiltransferase/química , Ácidos Hidroxâmicos/química , Isoenzimas/química , Sondas Moleculares/química , Proteínas/metabolismo , Acetanilidas/síntese química , Arilamina N-Acetiltransferase/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Ácidos Hidroxâmicos/síntese química , Isoenzimas/metabolismo , Sondas Moleculares/síntese química , Sinais de Localização Nuclear , Proteômica/métodos
19.
Chembiochem ; 19(15): 1648-1652, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29806887

RESUMO

Bioorthogonal chemistry can be used for the selective modification of biomolecules without interfering with any other functionality that might be present. Recent developments in the field include orthogonal bioorthogonal reactions to modify multiple biomolecules simultaneously. During our research, we observed that the reaction rates for the bioorthogonal inverse-electron-demand Diels-Alder (iEDDA) reactions between nonstrained vinylboronic acids (VBAs) and dipyridyl-s-tetrazines were exceptionally higher than those between VBAs and tetrazines bearing a methyl or phenyl substituent. As VBAs are mild Lewis acids, we hypothesised that coordination of the pyridyl nitrogen atom to the boronic acid promoted tetrazine ligation. Herein, we explore the molecular basis and scope of VBA-tetrazine ligation in more detail and benefit from its unique reactivity in the simultaneous orthogonal tetrazine labelling of two proteins modified with VBA and norbornene, a widely used strained alkene. We further show that the two orthogonal iEDDA reactions can be performed in living cells by labelling the proteasome by using a nonselective probe equipped with a VBA and a subunit-selective VBA bearing a norbornene moiety.


Assuntos
Alcenos/química , Ácidos Borônicos/química , Reação de Cicloadição/métodos , Norbornanos/química , Proteínas/química , Compostos de Vinila/química , Alcenos/síntese química , Ácidos Borônicos/síntese química , Proteínas de Fluorescência Verde/síntese química , Proteínas de Fluorescência Verde/química , Compostos Heterocíclicos com 1 Anel/síntese química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Norbornanos/síntese química , Proteínas/síntese química , Albumina Sérica Humana/síntese química , Albumina Sérica Humana/química , Compostos de Vinila/síntese química
20.
ACS Chem Biol ; 13(6): 1569-1576, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29733186

RESUMO

Activation of a cytotoxic T-cell is a complex multistep process, and tools to study the molecular events and their dynamics that result in T-cell activation in situ and in vivo are scarce. Here, we report the design and use of conditional epitopes for time-controlled T-cell activation in vivo. We show that trans-cyclooctene-protected SIINFEKL (with the lysine amine masked) is unable to elicit the T-cell response characteristic for the free SIINFEKL epitope. Epitope uncaging by means of an inverse-electron demand Diels-Alder (IEDDA) event restored T-cell activation and provided temporal control of T-cell proliferation in vivo.


Assuntos
Ciclo-Octanos/imunologia , Epitopos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Animais , Linhagem Celular , Reação de Cicloadição , Ciclo-Octanos/síntese química , Células Dendríticas/imunologia , Epitopos/química , Feminino , Compostos Heterocíclicos com 1 Anel/química , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA