Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Shock ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38888452

RESUMO

ABSTRACT: Sepsis is a common, heterogeneous, and frequently lethal condition of organ dysfunction and immune dysregulation due to infection. The causes of its heterogeneity, including the contribution of the pathogen, remain unknown. Using cecal slurry, a widely-used murine model of intraperitoneal polymicrobial sepsis, as well as 16S ribosomal RNA sequencing and measurement of immune markers, we performed a series of translational analyses to determine whether microbial variation in cecal slurry composition (representing intra-abdominal pathogens) mediated variation in septic response. We found wide variation in cecal slurry community composition that changed markedly over the 24-hour course of infection. This variation in cecal slurry bacteria led to large variation in physiologic and inflammatory responses. Severity of inflammatory response was positively correlated with intraperitoneal enrichment with Enterobacteriaceae. Likewise, in a human cohort of patients with intra-abdominal abscesses, Enterobacteriaceae was also associated with increased inflammatory markers. Taken together, these data demonstrate that intra-abdominal Enterobacteriaceae drives inflammation in sepsis both in animal models and human subjects. More broadly, our results demonstrate that pathogen identity is a major driver of the host response in polymicrobial sepsis and should not be overlooked as a major source of phenotypic heterogeneity.

2.
Semin Respir Crit Care Med ; 45(3): 449-458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626906

RESUMO

Connective tissue disease-related interstitial lung disease (CTD-ILD) is a frequent and serious complication of CTD, leading to high morbidity and mortality. Unfortunately, its pathogenesis remains poorly understood; however, one intriguing contributing factor may be the microbiome of the mouth and lungs. The oral microbiome, which is a major source of the lung microbiome through recurrent microaspiration, is altered in ILD patients. Moreover, in recent years, several lines of evidence suggest that changes in the oral and lung microbiota modulate the pulmonary immune response and thus may play a role in the pathogenesis of ILDs, including CTD-ILD. Here, we review the existing data demonstrating oral and lung microbiota dysbiosis and possible contributions to the development of CTD-ILD in rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, and systemic lupus erythematosus. We identify several areas of opportunity for future investigations into the role of the oral and lung microbiota in CTD-ILD.


Assuntos
Doenças do Tecido Conjuntivo , Doenças Pulmonares Intersticiais , Pulmão , Microbiota , Boca , Humanos , Doenças Pulmonares Intersticiais/microbiologia , Doenças Pulmonares Intersticiais/etiologia , Doenças do Tecido Conjuntivo/microbiologia , Doenças do Tecido Conjuntivo/complicações , Boca/microbiologia , Pulmão/microbiologia , Disbiose/microbiologia , Escleroderma Sistêmico/microbiologia , Escleroderma Sistêmico/complicações , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/microbiologia , Lúpus Eritematoso Sistêmico/fisiopatologia
4.
Am J Respir Crit Care Med ; 207(8): 1030-1041, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36378114

RESUMO

Rationale: Among patients with sepsis, variation in temperature trajectories predicts clinical outcomes. In healthy individuals, normal body temperature is variable and has decreased consistently since the 1860s. The biologic underpinnings of this temperature variation in disease and health are unknown. Objectives: To establish and interrogate the role of the gut microbiome in calibrating body temperature. Methods: We performed a series of translational analyses and experiments to determine whether and how variation in gut microbiota explains variation in body temperature in sepsis and in health. We studied patient temperature trajectories using electronic medical record data. We characterized gut microbiota in hospitalized patients using 16S ribosomal RNA gene sequencing. We modeled sepsis using intraperitoneal LPS in mice and modulated the microbiome using antibiotics, germ-free, and gnotobiotic animals. Measurements and Main Results: Consistent with prior work, we identified four temperature trajectories in patients hospitalized with sepsis that predicted clinical outcomes. In a separate cohort of 116 hospitalized patients, we found that the composition of patients' gut microbiota at admission predicted their temperature trajectories. Compared with conventional mice, germ-free mice had reduced temperature loss during experimental sepsis. Among conventional mice, heterogeneity of temperature response in sepsis was strongly explained by variation in gut microbiota. Healthy germ-free and antibiotic-treated mice both had lower basal body temperatures compared with control animals. The Lachnospiraceae family was consistently associated with temperature trajectories in hospitalized patients, experimental sepsis, and antibiotic-treated mice. Conclusions: The gut microbiome is a key modulator of body temperature variation in both health and critical illness and is thus a major, understudied target for modulating physiologic heterogeneity in sepsis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Sepse , Animais , Camundongos , Temperatura Corporal , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , RNA Ribossômico 16S/genética
5.
PLoS One ; 17(3): e0265023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298489

RESUMO

BACKGROUND: The microbiome is an important and increasingly-studied mediator of organismal metabolism, although how the microbiome affects metabolism remains incompletely understood. Many investigators use antibiotics to experimentally perturb the microbiome. However, antibiotics have poorly understood yet profound off-target effects on behavior and diet, including food and water aversion, that can confound experiments and limit their applicability. We thus sought to determine the relative influence of microbiome modulation and off-target antibiotic effects on the behavior and metabolic activity of mice. RESULTS: Mice treated with oral antibiotics via drinking water exhibited significant weight loss in fat, liver, and muscle tissue. These mice also exhibited a reduction in water and food consumption, with marked variability across antibiotic regimens. While administration of bitter-tasting but antimicrobially-inert compounds caused a similar reduction in water consumption, this did not cause tissue weight loss or reduced food consumption. Mice administered intraperitoneal antibiotics (bypassing the gastrointestinal tract) exhibited reduced tissue weights and oral intake, comparable to the effects of oral antibiotics. Antibiotic-treated germ-free mice did not have reduced tissue weights, providing further evidence that direct microbiome modulation (rather than behavioral effects) mediates these metabolic changes. CONCLUSIONS: While oral antibiotics cause profound effects on food and water consumption, antibiotic effects on organismal metabolism are primarily mediated by microbiome modulation. We demonstrate that tissue-specific weight loss following antibiotic administration is due primarily to microbiome effects rather than food and water aversion, and identify antibiotic regimens that effectively modulate gut microbiota while minimizing off-target behavioral effects.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Antibacterianos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Água/farmacologia , Redução de Peso
6.
MedEdPORTAL ; 16: 10944, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32821809

RESUMO

Introduction: Cross-cover, the process by which a nonprimary team physician cares for patients, usually during afternoons, evenings, and weekends, is common in academic medical centers. With the advent of residency duty-hour restrictions, cross-cover care has increased, making education in effective cross-coverage an urgent need. Methods: We implemented a cross-cover didactic activity composed of 18 interactive cases with 29 senior medical students enrolled in an internal medicine residency preparation course. The curriculum was facilitated by one faculty member and one senior medical resident and utilized think-pair-share learning techniques to discuss an approach to a range of common (both urgent and routine) cross-cover scenarios. We analyzed confidence and feelings of preparedness pre- and postintervention. We also examined differences in medical knowledge based on two multiple-choice written cross-cover cases that addressed both medical management and triage. Results: This curriculum significantly improved feelings of confidence (from 1.8 to 3.2, p < .0001), reduced anxiety (from 4.5 to 4.1, p < .03), and improved performance in clinical case scenarios (from 82% to 89%, p < .02). Discussion: This curriculum covered not only the important medical aspects of cross-cover care (e.g., diagnostics and management) but also equally important roles of cross-cover, such as how to effectively triage cross-cover scenarios. The curriculum was well received by students.


Assuntos
Internato e Residência , Estudantes de Medicina , Centros Médicos Acadêmicos , Competência Clínica , Currículo , Humanos
7.
BMJ Case Rep ; 13(6)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601136

RESUMO

Superior vena cava (SVC) syndrome results from the blockage of venous blood flow through the SVC, which is caused by either internal obstruction (eg, thrombus) or external compression (eg, thoracic malignancy and infection).1 While thrombus-related SVC syndrome is rising in prevalence, malignancy still accounts for the majority of cases.1 Regardless of cause, SVC syndrome is characterised by facial swelling and plethora, headache and dyspnoea.2 Although venous stenting has become standard of care for treatment of acute SVC syndrome, stent placement presents multiple risks including SVC rupture and cardiac tamponade. In these cases, a high index of suspicion and prompt action are required to avoid an often fatal outcome. Here, we present the case of a patient with cardiac tamponade and subsequent cardiac arrest after SVC stent placement.


Assuntos
Tamponamento Cardíaco/etiologia , Parada Cardíaca/etiologia , Complicações Pós-Operatórias/etiologia , Stents/efeitos adversos , Síndrome da Veia Cava Superior/cirurgia , Evolução Fatal , Humanos , Masculino , Pessoa de Meia-Idade , Veia Cava Superior/cirurgia
8.
J Cyst Fibros ; 19(5): e36-e38, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32312675

RESUMO

Persistent air leak (PAL) is a common problem after secondary pneumothorax due to cystic fibrosis (CF). These leaks, caused by either bronchopleural or alveolopleural fistula, are associated with higher morbidity and mortality [1]. Air leaks are traditionally treated with chronic chest tube drainage, chemical pleurodesis, or autologous blood patching in non-surgical candidates [1]. However, these strategies can increase infectious risk or pleural scarring, which are associated with poorer lung transplant surgical outcomes. Endobronchial valve (EBV) placement, while FDA-approved for use in both some surgical PALs and bronchoscopic volume reduction therapy, is one alternative option, but it could theoretically increase the risk of infection, especially in CF patients. Here, we report the case of a CF patient under evaluation for lung transplant who received EBVs for PAL after bilateral secondary spontaneous pneumothoraces.


Assuntos
Fibrose Cística/complicações , Empiema Pleural/complicações , Doenças Pleurais/cirurgia , Pneumotórax/complicações , Alvéolos Pulmonares , Fístula do Sistema Respiratório/cirurgia , Adulto , Broncoscopia , Feminino , Humanos , Doenças Pleurais/diagnóstico , Doenças Pleurais/etiologia , Próteses e Implantes , Fístula do Sistema Respiratório/diagnóstico , Fístula do Sistema Respiratório/etiologia
9.
J Oncol Pharm Pract ; 25(3): 731-734, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29385883

RESUMO

Mantle cell lymphoma is a mature B-cell non-Hodgkin lymphoma characterized by the hallmark (11;14) chromosomal translocation, which often presents with lymphadenopathy and extra-nodal involvement. Young, fit patients are generally treated with chemotherapy approaches that incorporate high-dose cytarabine (e.g. the Nordic regimen) followed by autologous hematopoietic cell transplantation. Because of the significant activity of cytarabine in mantle cell lymphoma, increasingly, high- and intermediate-dose cytarabine are being used in the treatment of elderly mantle cell lymphoma patients. In practice, many patients present with significant organ dysfunction and there is limited data on the use of high- to intermediate-dose cytarabine and bendamustine in this setting. Here, we report a case of a critically ill, elderly patient with mantle cell lymphoma and concomitant acute kidney injury and oliguria who was successfully treated with a cycle of cytarabine (Ara-C) and bendamustine accompanied by intermittent hemodialysis.


Assuntos
Injúria Renal Aguda/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cloridrato de Bendamustina/administração & dosagem , Citarabina/administração & dosagem , Linfoma de Célula do Manto/tratamento farmacológico , Diálise Renal , Idoso , Humanos , Masculino
10.
J Biol Chem ; 290(42): 25497-511, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26338703

RESUMO

Aging reduces skeletal muscle mass and strength, but the underlying molecular mechanisms remain elusive. Here, we used mouse models to investigate molecular mechanisms of age-related skeletal muscle weakness and atrophy as well as new potential interventions for these conditions. We identified two small molecules that significantly reduce age-related deficits in skeletal muscle strength, quality, and mass: ursolic acid (a pentacyclic triterpenoid found in apples) and tomatidine (a steroidal alkaloid derived from green tomatoes). Because small molecule inhibitors can sometimes provide mechanistic insight into disease processes, we used ursolic acid and tomatidine to investigate the pathogenesis of age-related muscle weakness and atrophy. We found that ursolic acid and tomatidine generate hundreds of small positive and negative changes in mRNA levels in aged skeletal muscle, and the mRNA expression signatures of the two compounds are remarkably similar. Interestingly, a subset of the mRNAs repressed by ursolic acid and tomatidine in aged muscle are positively regulated by activating transcription factor 4 (ATF4). Based on this finding, we investigated ATF4 as a potential mediator of age-related muscle weakness and atrophy. We found that a targeted reduction in skeletal muscle ATF4 expression reduces age-related deficits in skeletal muscle strength, quality, and mass, similar to ursolic acid and tomatidine. These results elucidate ATF4 as a critical mediator of age-related muscle weakness and atrophy. In addition, these results identify ursolic acid and tomatidine as potential agents and/or lead compounds for reducing ATF4 activity, weakness, and atrophy in aged skeletal muscle.


Assuntos
Fator 4 Ativador da Transcrição/antagonistas & inibidores , Envelhecimento/patologia , Músculo Esquelético/metabolismo , Sarcopenia/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/fisiologia , Animais , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , RNA Mensageiro/genética , Sarcopenia/patologia , Sarcopenia/prevenção & controle , Tomatina/análogos & derivados , Tomatina/farmacologia , Triterpenos/farmacologia , Ácido Ursólico
11.
Am J Physiol Endocrinol Metab ; 308(2): E144-58, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25406264

RESUMO

Skeletal muscle atrophy is a common and debilitating condition that remains poorly understood at the molecular level. To better understand the mechanisms of muscle atrophy, we used mouse models to search for a skeletal muscle protein that helps to maintain muscle mass and is specifically lost during muscle atrophy. We discovered that diverse causes of muscle atrophy (limb immobilization, fasting, muscle denervation, and aging) strongly reduced expression of the enzyme spermine oxidase. Importantly, a reduction in spermine oxidase was sufficient to induce muscle fiber atrophy. Conversely, forced expression of spermine oxidase increased muscle fiber size in multiple models of muscle atrophy (immobilization, fasting, and denervation). Interestingly, the reduction of spermine oxidase during muscle atrophy was mediated by p21, a protein that is highly induced during muscle atrophy and actively promotes muscle atrophy. In addition, we found that spermine oxidase decreased skeletal muscle mRNAs that promote muscle atrophy (e.g., myogenin) and increased mRNAs that help to maintain muscle mass (e.g., mitofusin-2). Thus, in healthy skeletal muscle, a relatively low level of p21 permits expression of spermine oxidase, which helps to maintain basal muscle gene expression and fiber size; conversely, during conditions that cause muscle atrophy, p21 expression rises, leading to reduced spermine oxidase expression, disruption of basal muscle gene expression, and muscle fiber atrophy. Collectively, these results identify spermine oxidase as an important positive regulator of muscle gene expression and fiber size, and elucidate p21-mediated repression of spermine oxidase as a key step in the pathogenesis of skeletal muscle atrophy.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Miogenina/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Animais , Jejum/fisiologia , GTP Fosfo-Hidrolases/genética , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Denervação Muscular , Fibras Musculares Esqueléticas/enzimologia , Atrofia Muscular/enzimologia , Atrofia Muscular/genética , Miogenina/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Restrição Física/fisiologia , Poliamina Oxidase
12.
Am J Physiol Endocrinol Metab ; 307(3): E245-61, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24895282

RESUMO

Immobilization causes skeletal muscle atrophy via complex signaling pathways that are not well understood. To better understand these pathways, we investigated the roles of p53 and ATF4, two transcription factors that mediate adaptations to a variety of cellular stresses. Using mouse models, we demonstrate that 3 days of muscle immobilization induces muscle atrophy and increases expression of p53 and ATF4. Furthermore, muscle fibers lacking p53 or ATF4 are partially resistant to immobilization-induced muscle atrophy, and forced expression of p53 or ATF4 induces muscle fiber atrophy in the absence of immobilization. Importantly, however, p53 and ATF4 do not require each other to promote atrophy, and coexpression of p53 and ATF4 induces more atrophy than either transcription factor alone. Moreover, muscle fibers lacking both p53 and ATF4 are more resistant to immobilization-induced atrophy than fibers lacking only p53 or ATF4. Interestingly, the independent and additive nature of the p53 and ATF4 pathways allows for combinatorial control of at least one downstream effector, p21. Using genome-wide mRNA expression arrays, we identified p21 mRNA as a skeletal muscle transcript that is highly induced in immobilized muscle via the combined actions of p53 and ATF4. Additionally, in mouse muscle, p21 induces atrophy in a manner that does not require immobilization, p53 or ATF4, and p21 is required for atrophy induced by immobilization, p53, and ATF4. Collectively, these results identify p53 and ATF4 as essential and complementary mediators of immobilization-induced muscle atrophy and discover p21 as a critical downstream effector of the p53 and ATF4 pathways.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Imobilização/efeitos adversos , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Fator 4 Ativador da Transcrição/genética , Substituição de Aminoácidos , Animais , Cruzamentos Genéticos , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Resistência à Doença , Estudo de Associação Genômica Ampla , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Proteína Supressora de Tumor p53/genética
13.
J Biol Chem ; 289(21): 14913-24, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24719321

RESUMO

Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy.


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Tomatina/análogos & derivados , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Descoberta de Drogas/métodos , Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Immunoblotting , Células MCF-7 , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Tomatina/farmacologia
14.
Am J Physiol Endocrinol Metab ; 305(7): E907-15, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23941879

RESUMO

Skeletal muscle denervation causes muscle atrophy via complex molecular mechanisms that are not well understood. To better understand these mechanisms, we investigated how muscle denervation increases growth arrest and DNA damage-inducible 45α (Gadd45a) mRNA in skeletal muscle. Previous studies established that muscle denervation strongly induces Gadd45a mRNA, which increases Gadd45a, a small myonuclear protein that is required for denervation-induced muscle fiber atrophy. However, the mechanism by which denervation increases Gadd45a mRNA remained unknown. Here, we demonstrate that histone deacetylase 4 (HDAC4) mediates induction of Gadd45a mRNA in denervated muscle. Using mouse models, we show that HDAC4 is required for induction of Gadd45a mRNA during muscle denervation. Conversely, forced expression of HDAC4 is sufficient to increase skeletal muscle Gadd45a mRNA in the absence of muscle denervation. Moreover, Gadd45a mediates several downstream effects of HDAC4, including induction of myogenin mRNA, induction of mRNAs encoding the embryonic nicotinic acetylcholine receptor, and, most importantly, skeletal muscle fiber atrophy. Because Gadd45a induction is also a key event in fasting-induced muscle atrophy, we tested whether HDAC4 might also contribute to Gadd45a induction during fasting. Interestingly, however, HDAC4 is not required for fasting-induced Gadd45a expression or muscle atrophy. Furthermore, activating transcription factor 4 (ATF4), which contributes to fasting-induced Gadd45a expression, is not required for denervation-induced Gadd45a expression or muscle atrophy. Collectively, these results identify HDAC4 as an important regulator of Gadd45a in denervation-induced muscle atrophy and elucidate Gadd45a as a convergence point for distinct upstream regulators during muscle denervation and fasting.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histona Desacetilases/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/fisiologia , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Jejum/metabolismo , Histona Desacetilases/genética , Masculino , Camundongos , Camundongos Knockout , Denervação Muscular , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patologia , Proteínas Nucleares/genética
15.
PLoS One ; 7(6): e39332, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745735

RESUMO

Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fígado Gorduroso/tratamento farmacológico , Intolerância à Glucose/tratamento farmacológico , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Triterpenos/uso terapêutico , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Ácido Ursólico
16.
J Biol Chem ; 287(33): 27290-301, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22692209

RESUMO

Diverse stresses including starvation and muscle disuse cause skeletal muscle atrophy. However, the molecular mechanisms of muscle atrophy are complex and not well understood. Here, we demonstrate that growth arrest and DNA damage-inducible 45a protein (Gadd45a) is a critical mediator of muscle atrophy. We identified Gadd45a through an unbiased search for potential downstream mediators of the stress-inducible, pro-atrophy transcription factor ATF4. We show that Gadd45a is required for skeletal muscle atrophy induced by three distinct skeletal muscle stresses: fasting, muscle immobilization, and muscle denervation. Conversely, forced expression of Gadd45a in muscle or cultured myotubes induces atrophy in the absence of upstream stress. We show that muscle-specific ATF4 knock-out mice have a reduced capacity to induce Gadd45a mRNA in response to stress, and as a result, they undergo less atrophy in response to fasting or muscle immobilization. Interestingly, Gadd45a is a myonuclear protein that induces myonuclear remodeling and a comprehensive program for muscle atrophy. Gadd45a represses genes involved in anabolic signaling and energy production, and it induces pro-atrophy genes. As a result, Gadd45a reduces multiple barriers to muscle atrophy (including PGC-1α, Akt activity, and protein synthesis) and stimulates pro-atrophy mechanisms (including autophagy and caspase-mediated proteolysis). These results elucidate a critical stress-induced pathway that reprograms muscle gene expression to cause atrophy.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Nucleares/metabolismo , Estresse Fisiológico , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/patologia , Metabolismo Energético/genética , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Proteínas Nucleares/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Biossíntese de Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição
17.
Cell Metab ; 13(6): 627-38, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21641545

RESUMO

Skeletal muscle atrophy is a common and debilitating condition that lacks a pharmacologic therapy. To develop a potential therapy, we identified 63 mRNAs that were regulated by fasting in both human and mouse muscle, and 29 mRNAs that were regulated by both fasting and spinal cord injury in human muscle. We used these two unbiased mRNA expression signatures of muscle atrophy to query the Connectivity Map, which singled out ursolic acid as a compound whose signature was opposite to those of atrophy-inducing stresses. A natural compound enriched in apples, ursolic acid reduced muscle atrophy and stimulated muscle hypertrophy in mice. It did so by enhancing skeletal muscle insulin/IGF-I signaling and inhibiting atrophy-associated skeletal muscle mRNA expression. Importantly, ursolic acid's effects on muscle were accompanied by reductions in adiposity, fasting blood glucose, and plasma cholesterol and triglycerides. These findings identify a potential therapy for muscle atrophy and perhaps other metabolic diseases.


Assuntos
Perfilação da Expressão Gênica , Músculo Esquelético/patologia , Atrofia Muscular/genética , Triterpenos/farmacologia , Animais , Linhagem Celular , Jejum , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica , Membro Posterior/inervação , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Denervação Muscular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Ácido Ursólico
18.
J Infect Dis ; 202(4): 533-41, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20617900

RESUMO

BACKGROUND: Mycobacterium tuberculosis infection in humans results in either latent infection or active tuberculosis. We sought to determine whether a higher frequency of regulatory T (T(reg)) cells predispose an individual toward active disease or whether T(reg) cells develop in response to active disease. METHODS: In cynomolgus macaques infected with a low dose of M. tuberculosis, approximately 50% develop primary tuberculosis, and approximately 50% become latently infected. Forty-one animals were monitored for 6-8 months to assess the correlation of the frequency of Foxp3(+) cells in peripheral blood and airways with the outcome of infection. RESULTS: In all animals, the frequency of T(reg) cells (CD4(+)Foxp3(+)) in peripheral blood rapidly decreased and simultaneously increased in the airways. Latently infected monkeys had a significantly higher frequency of T(reg) cells in peripheral blood before infection and during early infection, compared with monkeys that developed active disease. Monkeys with active disease experienced increased frequencies of T(reg) cells among peripheral blood mononuclear cells as they developed disease. CONCLUSIONS: Our data suggest that increased frequencies of T(reg) cells in active disease occur in response to increased inflammation rather than act as a causative factor in progression to active disease.


Assuntos
Mycobacterium tuberculosis/imunologia , Linfócitos T Reguladores/imunologia , Tuberculose/imunologia , Animais , Sangue/imunologia , Antígenos CD4/análise , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/análise , Humanos , Pulmão/imunologia , Contagem de Linfócitos , Macaca , Linfócitos T Reguladores/química , Tuberculose/microbiologia
19.
Mol Endocrinol ; 24(4): 790-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20197309

RESUMO

Prolonged fasting alters skeletal muscle gene expression in a manner that promotes myofiber atrophy, but the underlying mechanisms are not fully understood. Here, we examined the potential role of activating transcription factor 4 (ATF4), a transcription factor with an evolutionarily ancient role in the cellular response to starvation. In mouse skeletal muscle, fasting increases the level of ATF4 mRNA. To determine whether increased ATF4 expression was required for myofiber atrophy, we reduced ATF4 expression with an inhibitory RNA targeting ATF4 and found that it reduced myofiber atrophy during fasting. Likewise, reducing the fasting level of ATF4 mRNA with a phosphorylation-resistant form of eukaryotic initiation factor 2alpha decreased myofiber atrophy. To determine whether ATF4 was sufficient to reduce myofiber size, we overexpressed ATF4 and found that it reduced myofiber size in the absence of fasting. In contrast, a transcriptionally inactive ATF4 construct did not reduce myofiber size, suggesting a requirement for ATF4-mediated transcriptional regulation. To begin to determine the mechanism of ATF4-mediated myofiber atrophy, we compared the effects of fasting and ATF4 overexpression on global skeletal muscle mRNA expression. Interestingly, expression of ATF4 increased a small subset of five fasting-responsive mRNAs, including four of the 15 mRNAs most highly induced by fasting. These five mRNAs encode proteins previously implicated in growth suppression (p21(Cip1/Waf1), GADD45alpha, and PW1/Peg3) or titin-based stress signaling [muscle LIM protein (MLP) and cardiac ankyrin repeat protein (CARP)]. Taken together, these data identify ATF4 as a novel mediator of skeletal myofiber atrophy during starvation.


Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Jejum/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Fator 4 Ativador da Transcrição/genética , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA