Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(41)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34214995

RESUMO

The discovery of multifunctional properties related to electro-activity of organic systems of biomolecules is important for a variety of applications, especially for devices in the realm of biocompatible sensors and/or bioactuators. A further step towards such applications is to prepare thin films with the required properties. Here, the investigation is focused on the characterization of films of guanine and cytosine nucleobases, prepared by thermal evaporation-an industrial accessible deposition technique. The cytosine films have an orthorhombic non-centrosymmetric structure and grow in two interconnected nanostructured fractal patterns, of nearly equal proportion. Piezoresponse force microscopy images acquired at room temperature on the cytosine films display large zones with antiparallel alignment of the vertical components of the polarization vector. Guanine films have a dense nano-grained morphology. Our studies reveal electrical polarization switching effects which can be related to ferroelectricity in the films of guanine molecules. Characteristic ferroelectric polarization-electric-field hysteresis loops showing large electrical polarization are observed at low temperatures up to 200 K. Above this temperature, the guanine films have a preponderant paraelectric phase containing residual or locally induced nano-scopic ferroelectric domains, as observed by piezoresponse force microscopy at room temperature.

2.
Sci Rep ; 5: 14974, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446442

RESUMO

The compensation of the depolarization field in ferroelectric layers requires the presence of a suitable amount of charges able to follow any variation of the ferroelectric polarization. These can be free carriers or charged defects located in the ferroelectric material or free carriers coming from the electrodes. Here we show that a self-doping phenomenon occurs in epitaxial, tetragonal ferroelectric films of Pb(Zr0.2Ti0.8)O3, consisting in generation of point defects (vacancies) acting as donors/acceptors. These are introducing free carriers that partly compensate the depolarization field occurring in the film. It is found that the concentration of the free carriers introduced by self-doping increases with decreasing the thickness of the ferroelectric layer, reaching values of the order of 10(26) m(-3) for 10 nm thick films. One the other hand, microscopic investigations show that, for thicknesses higher than 50 nm, the 2O/(Ti+Zr+Pb) atomic ratio increases with the thickness of the layers. These results suggest that the ratio between the oxygen and cation vacancies varies with the thickness of the layer in such a way that the net free carrier density is sufficient to efficiently compensate the depolarization field and to preserve the outward direction of the polarization.

3.
ACS Appl Mater Interfaces ; 6(4): 2929-39, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24446901

RESUMO

Electrode interface is a key element in controlling the macroscopic electrical properties of the ferroelectric capacitors based on thin films. In the case of epitaxial ferroelectrics, the electrode interface is essential in controlling the leakage current and the polarization switching, two important elements in the read/write processes of nonvolatile memories. However, the relation between the polarization bound charges and the electronic properties of the electrode interfaces is not yet well understood. Here we show that polarization charges are controlling the height of the potential barriers at the electrode interfaces in the case of Pb(Zr,Ti)O3 and BaTiO3 epitaxial films. The results suggest that the height is set to a value allowing rapid compensation of the depolarization field during the polarization switching, being almost independent of the metals used for electrodes. This general behavior open a new perspective in engineering interface properties and designing new devices based on epitaxial ferroelectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA