RESUMO
Chronic wasting disease (CWD) is a prion disease affecting farmed and free-ranging cervids. CWD is rapidly expanding across North America and its mechanisms of transmission are not completely understood. Considering that cervids are commonly afflicted by nasal bot flies, we tested the potential of these parasites to transmit CWD. Parasites collected from naturally infected white-tailed deer were evaluated for their prion content using the protein misfolding cyclic amplification (PMCA) technology and bioassays. Here, we describe PMCA seeding activity in nasal bot larvae collected from naturally infected, nonclinical deer. These parasites efficiently infect CWD-susceptible mice in ways suggestive of high infectivity titers. To further mimic environmental transmission, bot larvae homogenates were mixed with soils, and plants were grown on them. We show that both soils and plants exposed to CWD-infected bot homogenates displayed seeding activity by PMCA. This is the first report describing prion infectivity in a naturally occurring deer parasite. Our data also demonstrate that CWD prions contained in nasal bots interact with environmental components and may be relevant for disease transmission.
Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Camundongos , Príons/metabolismo , Doença de Emaciação Crônica/metabolismo , Cervos/metabolismo , SoloRESUMO
The Asian longhorned tick (Haemaphysalis longicornis) is a vector of multiple arboviral and bacterial pathogens in its native East Asia and expanded distribution in Australasia. This species has both bisexual and parthenogenetic populations that can reach high population densities under favorable conditions. Established populations of parthenogenetic H. longicornis were detected in the eastern United States in 2017 and the possible range of this species at the continental level (North America) based on climatic conditions has been modeled. However, little is known about factors influencing the distribution of H. longicornis at geographic scales relevant to local surveillance and control. To examine the importance of local physiogeographic conditions such as geology, soil characteristics, and land cover on the distribution of H. longicornis we employed ecological niche modeling using three machine learning algorithms - Maxent, Random Forest (RF), and Generalized Boosting Method (GBM) to estimate probability of finding H. longicornis in a particular location in New Jersey (USA), based on environmental predictors. The presence of H. longicornis in New Jersey was positively associated with Piedmont physiogeographic province and two soil types - Alfisols and Inceptisols. Soil hydraulic conductivity was the most important predictor explaining H. longicornis habitat suitability, with more permeable sandy soils with higher hydraulic conductivity being less suitable than clay or loam soils. The models were projected over the state of New Jersey creating a probabilistic map of H. longicornis habitat suitability at a high spatial resolution of 90×90 meters. The model's sensitivity was 87% for locations sampled in 2017-2019 adding to the growing evidence of the importance of soil characteristics to the survival of ticks. For the 2020-2022 dataset the model fit was 57%, suggestive of spillover to less optimal habitats or, alternatively, heterogeneity in soil characteristics at the edges of broad physiographic zones. Further modeling should incorporate abundance and life-stage information as well as detailed characterization of the soil at collection sites. Once critical parameters that drive the survival and abundance of H. longicornis are identified they can be used to guide surveillance and control strategies for this invasive species.
Assuntos
Ixodidae , Carrapatos , Animais , New Jersey , Ecossistema , SoloRESUMO
BACKGROUND: We conducted a large-scale, passive regional survey of ticks associated with wildlife of the eastern United States. Our primary goals were to better assess the current geographical distribution of exotic Haemaphysalis longicornis and to identify potential wild mammalian and avian host species. However, this large-scale survey also provided valuable information regarding the distribution and host associations for many other important tick species that utilize wildlife as hosts. METHODS: Ticks were opportunistically collected by cooperating state and federal wildlife agencies. All ticks were placed in the supplied vials and host information was recorded, including host species, age, sex, examination date, location (at least county and state), and estimated tick burden. All ticks were identified to species using morphology, and suspect H. longicornis were confirmed through molecular techniques. RESULTS: In total, 1940 hosts were examined from across 369 counties from 23 states in the eastern USA. From these submissions, 20,626 ticks were collected and identified belonging to 11 different species. Our passive surveillance efforts detected exotic H. longicornis from nine host species from eight states. Notably, some of the earliest detections of H. longicornis in the USA were collected from wildlife through this passive surveillance network. In addition, numerous new county reports were generated for Amblyomma americanum, Amblyomma maculatum, Dermacentor albipictus, Dermacentor variabilis, and Ixodes scapularis. CONCLUSIONS: This study provided data on ticks collected from animals from 23 different states in the eastern USA between 2010 and 2021, with the primary goal of better characterizing the distribution and host associations of the exotic tick H. longicornis; however, new distribution data on tick species of veterinary or medical importance were also obtained. Collectively, our passive surveillance has detected numerous new county reports for H. longicornis as well as I. scapularis. Our study utilizing passive wildlife surveillance for ticks across the eastern USA is an effective method for surveying a diversity of wildlife host species, allowing us to better collect data on current tick distributions relevant to human and animal health.
Assuntos
Ixodes , Ixodidae , Infestações por Carrapato , Amblyomma , Animais , Animais Selvagens , Especificidade de Hospedeiro , Humanos , Mamíferos , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Estados Unidos/epidemiologiaRESUMO
The US Department of Agriculture (USDA), Animal Plant Health Inspection Service (APHIS), Cattle Fever Tick Eradication Program (CFTEP) monitor a quarantine zone along the Texas border to prevent the introduction of stray livestock carrying cattle fever ticks entering the United States from Mexico. Stray cattle collected by CFTEP are checked for ticks and several infectious disease-causing pathogens, but not for bovine viral diarrhea virus (BVDV). BVDV is one of the most economically impactful viruses affecting US cattle producers. BVDV is present in all parts of the world, but it has been demonstrated that another distantly related pestivirus, HoBi-like pestivirus (HoBiPev), can also cause BVD. To date, HoBiPev has not been detected in the United States, but is commonly found in Brazil, and sporadically in Europe and Asia. The objective of the current study was to evaluate the seroprevalence of pestiviruses, with a specific focus on HoBiPev, in stray cattle. Virus neutralization (VN) assay was used to determine seroprevalence (or antibody titers) of BVDV-1, BVDV-2, and HoBiPev. Approximately 50% (67 of 134) of the samples were seropositive for pestiviruses; all 67 positive samples were positive (50%) for BVDV-1, 66 samples of the 67 were positive (49.3%) for BVDV-2, and the same 66 samples of the 67 were also positive (49.3%) for HoBiPev. Due to the antigenic cross-reactivity among Pestiviruses, the comparative antibody against each pestivirus was calculated from all VN-positive samples. Titers were clearly higher against BVDV-1, and only one sample had a titer clearly higher against BVDV-2. No sample had an antibody titer higher for HoBiPev, and while this does not prove the absence of HoBiPev, it does provide evidence that the prevalence of HoBiPev is less predominant than BVDV-1. Additionally, data from these samples provide evidence on the susceptibility of animals that may enter into the United States, with ~50% of the animals seronegative for bovine pestiviruses. This cattle population provides a unique opportunity to evaluate and monitor changes in seroprevalence of economically important cattle diseases affecting the cattle industry.
RESUMO
Between March 2019 and February 2020, Asian long-horned ticks (Haemaphysalis longicornis Neumann, 1901) were discovered and collected for the first time in one middle and seven eastern Tennessee counties, facilitated by a newly developed passive and collaborative tick-surveillance network. Network collaborators included federal, state, county, university, and private resource personnel working with companion animals, livestock, and wildlife. Specimens were collected primarily from dogs and cattle, with initial detections of female adult stage ticks by stakeholders associated with parasitology positions (e.g., entomologists and veterinary parasitologists). Initial county tick detections were confirmed with morphological and molecular identifications, and then screened for the presence of animal-associated pathogens (Anaplasma marginale, Babesia species, Ehrlichia species, and Theileria orientalis), for which all tests were negative. Herein, we describe the identification and confirmation of these tick specimens as well as other results of the surveillance collaboration.
Assuntos
Ixodidae , Theileria , Doenças Transmitidas por Carrapatos , Carrapatos , Anaplasma , Animais , Bovinos , Cães , FemininoRESUMO
Cattle fever ticks, Rhipicephalus microplus and R. annulatus have been eradicated from the United States and inspectors from the U.S. Department of Agriculture (USDA), Animal Plant Health Inspection Service (APHIS), Cattle Fever Tick Eradication Program (CFTEP) monitor the quarantine zone along the Texas border to prevent the introduction of livestock carrying cattle fever ticks from Mexico. Stray livestock apprehended by CFTEP in the zone are checked for ticks and tested for infectious disease-causing pathogens but are not evaluated for evidence of infection with tick-borne pathogens. We tested blood samples collected from stray cattle by CFTEP inspectors for evidence of infection with tick-borne pathogens. As a comparison group representing U.S. resident cattle, we tested blood samples that had been sent to the Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL) for unrelated testing. Both sets of blood samples were evaluated using the same specific and broad-spectrum PCR assays. For the border cattle the overall prevalence of infection with one or more tick-borne pathogen was 58.5 % (79/135) with many co-infections, including 30 cattle positive for Babesia bovis and/or Babesia bigemina (22.2 %) and 77 cattle positive for Anaplasma marginale (57 %), three of these animals were also positive for Borrelia theileri. No resident cattle represented by the TVMDL samples were infected with either of the Babesia spp., or with Borrelia theileri, but three were positive for Theileria orientalis and 7.3 % (7/96) were positive for A. marginale. These data show that cattle originating in Mexico have a higher prevalence of infection with tick-borne pathogens relative to resident U.S. cattle and specifically, a proportion are infected with bovine Babesia, which is absent from U.S. cattle populations. Consequently, these stray cattle may be a reservoir of tick-borne pathogens and if populations of Boophilus ticks become reestablished in areas where they had previously been eradicated, could pose a significant risk to the U.S. Cattle industry.
Assuntos
Anaplasmose/epidemiologia , Babesiose , Doenças dos Bovinos/epidemiologia , Coccidiose/veterinária , Doenças Transmitidas por Carrapatos/epidemiologia , Anaplasma/isolamento & purificação , Anaplasma marginale/isolamento & purificação , Animais , Vetores Aracnídeos/microbiologia , Vetores Aracnídeos/parasitologia , Babesia/isolamento & purificação , Babesiose/epidemiologia , Borrelia/isolamento & purificação , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/parasitologia , Coccidiose/epidemiologia , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/parasitologia , Vetores de Doenças , México , Reação em Cadeia da Polimerase/veterinária , Infecções Protozoárias em Animais/epidemiologia , Rhipicephalus/microbiologia , Rhipicephalus/parasitologia , Texas , Theileria/isolamento & purificação , Theileriose/epidemiologiaRESUMO
Bovine babesiosis is a reportable transboundary animal disease caused by Babesia bovis and Babesiabigemina in the Americas where these apicomplexan protozoa are transmitted by the invasive cattle fever ticks Rhipicephalus (Boophilus) microplus and Rhipicephalus(Boophilus) annulatus. In countries like Mexico where cattle fever ticks remain endemic, bovine babesiosis is detrimental to cattle health and results in a significant economic cost to the livestock industry. These cattle disease vectors continue to threaten the U.S. cattle industry despite their elimination through efforts of the Cattle Fever Tick Eradication Program. Mexico and the U.S. share a common interest in managing cattle fever ticks through their economically important binational cattle trade. Here, we report the outcomes of a meeting where stakeholders from Mexico and the U.S. representing the livestock and pharmaceutical industry, regulatory agencies, and research institutions gathered to discuss research and knowledge gaps requiring attention to advance progressive management strategies for bovine babesiosis and cattle fever ticks. Research recommendations and other actionable activities reflect commitment among meeting participants to seize opportunities for collaborative efforts. Addressing these research gaps is expected to yield scientific knowledge benefitting the interdependent livestock industries of Mexico and the U.S. through its translation into enhanced biosecurity against the economic and animal health impacts of bovine babesiosis and cattle fever ticks.
RESUMO
Ectoparasites, such as cattle fever ticks, and the diseases they carry pose a risk to the global cattle population in reduced productivity and in livability. Tick infestations carry significant economic implications through losses in productivity, increased morbidity, and control costs. Cattle fever ticks were eradicated from the United States through concentrated efforts across state and federal agencies. The Cattle Fever Tick Eradication Program maintains a permanent quarantine and buffer zone along the Texas-Mexico border to monitor and control reincursions of the tick from Mexico due to movements of wildlife or stray animals. The number of apprehensions of stray livestock and changing infestation rates may be influenced by many factors including increases in violence along the border or environmental effects such as weather pattern changes, river levels, or temperature fluctuations. Using annual records of the number of cattle apprehended and infestation rates, an analysis of the effects of media-reported border violence and environmental conditions can provide a unique understanding of cattle fever tick prevention and the challenges control programs face. Results from this analysis suggest that both media-reported violence and weather changes affect the rate at which infested cattle are apprehended, and these effects differ depending on spatial and temporal factors. With continued land use changes, social unrest in endemic areas, and changing weather patterns, the efforts to control and eradicate cattle fever ticks, both in the United States and globally, is likely to be an ongoing concern.
RESUMO
On September 30, 2016, the US National Veterinary Services Laboratory confirmed an autochthonous case of New World screwworm infestation in a Key deer (Odocoileus virginianus clavium) from Big Pine Key, Fla. This case marked the first identification of a sustained and reproducing population of New World screwworm flies in the United States since 1966. Multiple federal, state, and local government agencies collaborated to initiate a response to the outbreak. Efforts were successful in eradicating the flies from Florida.
Assuntos
Cervos , Dípteros , Animais , Surtos de Doenças , FloridaRESUMO
The common human-biting tick, Ixodes pacificus, is the primary vector of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto (ss) in western North America and has been found to harbor other closely-related spirochetes in the Borrelia burgdorferi sensu lato (sl) complex. Between 2008-2015, 11,066 adult and 3,815 nymphal I. pacificus and five adult and 144 nymphal Ixodes spinpalpis, a commonly collected wildlife tick, were collected from 42 California counties. Borrelia burgdorferi sl was detected in 1.2% and 3.8% I. pacificus adults and nymphs, respectively. Results from this study indicate genetic diversity and geographic structure of B. burgdorferi sl in California I. pacificus ticks, by sequence comparison of the16S rRNA gene, with B. burgdorferi ss, the agent of Lyme disease, found only in I. pacificus collected from the north and central coastal and Sierra Nevada foothill regions; B. burgdorferi ss was not detected in ticks tested from southern California. In contrast, Borrelia bissettiae, a member of the B. burgdorferi sl complex, was detected in both I. pacificus and I. spinipalpis, in the coastal region of both northern and southern California, but was absent from ticks in the Sierra Nevada foothills. In a similar pattern to B. bissettiae, Borrelia americana (a member of the B. burgdorferi sl complex) was detected in a single adult I. pacificus from the north coast and two I. spinipalpis nymphs from south-coastal California. This study highlights that the geographic area of Lyme disease acarological risk in California is the north-central and Sierra Nevada foothill regions of the state with little to no risk in the southern regions of the state.
Assuntos
Borrelia/genética , Ixodes/microbiologia , Filogeografia , Animais , California , Feminino , Humanos , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Masculino , Ninfa/microbiologia , RNA Ribossômico 16S/química , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/transmissãoRESUMO
Haemaphysalis longicornis is a tick indigenous to eastern Asia and an important vector of human and animal disease agents, resulting in such outcomes as human hemorrhagic fever and reduction of production in dairy cattle by 25%. H. longicornis was discovered on a sheep in New Jersey in August 2017 (1). This was the first detection in the United States outside of quarantine. In the spring of 2018, the tick was again detected at the index site, and later, in other counties in New Jersey, in seven other states in the eastern United States, and in Arkansas. The hosts included six species of domestic animals, six species of wildlife, and humans. To forestall adverse consequences in humans, pets, livestock, and wildlife, several critical actions are indicated, including expanded surveillance to determine the evolving distribution of H. longicornis, detection of pathogens that H. longicornis currently harbors, determination of the capacity of H. longicornis to serve as a vector for a range of potential pathogens, and evaluation of effective agents and methods for the control of H. longicornis.
Assuntos
Ixodidae , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia , Animais , Vetores de Doenças , Humanos , Infestações por Carrapato/veterinária , Estados Unidos/epidemiologiaRESUMO
Surveillance to investigate the wildlife-vector transmission cycle of the human pathogen Borrelia miyamotoi in California, USA, revealed infections in dusky-footed woodrats, brush mice, and California mice. Phylogenetic analyses suggest a single, well-supported clade of B. miyamotoi is circulating in California.
Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/microbiologia , Infecções por Borrelia/veterinária , Borrelia/classificação , Animais , California/epidemiologia , DNA Bacteriano , DNA Espaçador Ribossômico , Feminino , Humanos , Mamíferos , Filogenia , Vigilância em Saúde Pública , Carrapatos/microbiologiaRESUMO
The rabbit tick, Haemaphysalis leporispalustris Packard, is known for its association with Rickettsia rickettsii as it harbors both virulent and avirulent strains of this pathogen. In this manuscript we report findings and preliminary characterization of a novel spotted fever group rickettsia (SFGR) in rabbit ticks from California, USA. Rickettsia sp. CA6269 (proposed "Candidatus Rickettsia lanei") is most related to known R. rickettsii isolates but belongs to its own well-supported branch different from those of all R. rickettsii including strain Hlp2 and from Rickettsia sp. 364D (also known as R. philipii) and R. peacockii. This SFGR probably exhibits both transovarial and transstadial survival since it was found in both questing larvae and nymphs. Although this rabbit tick does not frequently bite humans, its role in maintenance of other rickettsial agents and this novel SFGR warrant further investigation.
Assuntos
Genótipo , Rickettsia/genética , Rickettsia/isolamento & purificação , Rickettsiose do Grupo da Febre Maculosa/veterinária , Infestações por Carrapato/veterinária , Animais , California/epidemiologia , Tipagem de Sequências Multilocus , Ninfa/microbiologia , Reação em Cadeia da Polimerase , Coelhos/microbiologia , Coelhos/parasitologia , Rickettsia/classificação , Rickettsiose do Grupo da Febre Maculosa/epidemiologia , Rickettsiose do Grupo da Febre Maculosa/parasitologia , Infestações por Carrapato/epidemiologia , Carrapatos/microbiologiaRESUMO
Although the head louse, Pediculus humanus capitis De Geer, and body louse, Pediculus humanus humanus L., both have a worldwide distribution, the occurrence of head louse pediculosis appears to be more prevalent in modern societies despite systematic use of various pediculicides. This study tested head lice collected in rural Georgia and body lice collected in Russia for the prevalence of a kdr-biomarker that is associated with permethrin resistance. This study also screened lice for the presence of DNA from Bartonella quintana and Acinetobacter species. The kdr-permethrin resistance biomarker for the T917I mutation was detected by RFLP and PCR in 99.9% of head lice tested from Georgia, whereas only 2.9% of body lice from Russia tested positive for this kdr biomarker. DNA of B. quintana was detected in 10.3% of head lice from Georgia, whereas 84.8% of body lice from Russia tested positive. Acinetobacter DNA was detected in 80.8% (95% CI, 68-89%) of head lice from Georgia and all body lice from Russia tested.
Assuntos
Resistência a Inseticidas , Inseticidas/farmacologia , Pediculus/efeitos dos fármacos , Permetrina/farmacologia , Acinetobacter/isolamento & purificação , Animais , Bartonella quintana/isolamento & purificação , California , Criança , Pré-Escolar , DNA Bacteriano/análise , Feminino , Georgia , Humanos , Infestações por Piolhos/parasitologia , Masculino , Ninfa/efeitos dos fármacos , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Pediculus/genética , Pediculus/crescimento & desenvolvimento , Pediculus/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Federação RussaRESUMO
Rickettsia philipii (type strain "Rickettsia 364D"), the etiologic agent of Pacific Coast tick fever (PCTF), is transmitted to people by the Pacific Coast tick, Dermacentor occidentalis. Following the first confirmed human case of PCTF in 2008, 13 additional human cases have been reported in California, more than half of which were pediatric cases. The most common features of PCTF are the presence of at least one necrotic lesion known as an eschar (100%), fever (85%), and headache (79%); four case-patients required hospitalization and four had multiple eschars. Findings presented here implicate the nymphal or larval stages of D. occidentalis as the primary vectors of R. philipii to people. Peak transmission risk from ticks to people occurs in late summer. Rickettsia philipii DNA was detected in D. occidentalis ticks from 15 of 37 California counties. Similarly, non-pathogenic Rickettsia rhipicephali DNA was detected in D. occidentalis in 29 of 38 counties with an average prevalence of 12.0% in adult ticks. In total, 5,601 ticks tested from 2009 through 2015 yielded an overall R. philipii infection prevalence of 2.1% in adults, 0.9% in nymphs and a minimum infection prevalence of 0.4% in larval pools. Although most human cases of PCTF have been reported from northern California, acarological surveillance suggests that R. philipii may occur throughout the distribution range of D. occidentalis.
Assuntos
Vetores Aracnídeos/microbiologia , Dermacentor/microbiologia , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/transmissão , Rickettsia/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Antibacterianos/sangue , California/epidemiologia , Criança , Pré-Escolar , Feminino , Febre , Humanos , Imunoglobulina G/sangue , Larva/microbiologia , Masculino , Pessoa de Meia-Idade , Ninfa/microbiologia , Prevalência , Rickettsia/genética , Rickettsia/imunologia , Rickettsia/patogenicidade , Infecções por Rickettsia/diagnóstico , Infecções por Rickettsia/microbiologia , Adulto JovemRESUMO
Borrelia miyamotoi is a newly described emerging pathogen transmitted to people by Ixodes species ticks and found in temperate regions of North America, Europe, and Asia. There is limited understanding of large scale entomological risk patterns of B. miyamotoi and of Borreila burgdorferi sensu stricto (ss), the agent of Lyme disease, in western North America. In this study, B. miyamotoi, a relapsing fever spirochete, was detected in adult (n=70) and nymphal (n=36) Ixodes pacificus ticks collected from 24 of 48 California counties that were surveyed over a 13 year period. Statewide prevalence of B. burgdorferi sensu lato (sl), which includes B. burgdorferi ss, and B. miyamotoi were similar in adult I. pacificus (0.6% and 0.8%, respectively). In contrast, the prevalence of B. burgdorferi sl was almost 2.5 times higher than B. miyamotoi in nymphal I. pacificus (3.2% versus 1.4%). These results suggest similar risk of exposure to B. burgdorferi sl and B. miyamotoi from adult I. pacificus tick bites in California, but a higher risk of contracting B. burgdorferi sl than B. miyamotoi from nymphal tick bites. While regional risk of exposure to these two spirochetes varies, the highest risk for both species is found in north and central coastal California and the Sierra Nevada foothill region, and the lowest risk is in southern California; nevertheless, tick-bite avoidance measures should be implemented in all regions of California. This is the first study to comprehensively evaluate entomologic risk for B. miyamotoi and B. burgdorferi for both adult and nymphal I. pacificus, an important human biting tick in western North America.
Assuntos
Infecções por Borrelia/transmissão , Borrelia burgdorferi/patogenicidade , Doença de Lyme/transmissão , Doenças Transmitidas por Carrapatos/transmissão , Animais , Infecções por Borrelia/epidemiologia , Infecções por Borrelia/microbiologia , Borrelia burgdorferi/isolamento & purificação , Humanos , Ixodes/microbiologia , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia , Ninfa/microbiologia , Ninfa/patogenicidade , Fatores de Risco , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologiaRESUMO
Homeless persons in San Francisco, California, USA,have been shown to have head and body lice infestations and Bartonella quintana infections. We surveyed a self selected population of homeless persons in San Francisco to assess infestations of head and body lice, risks of having body lice, and presence of B. quintana in lice. A total of 203 persons who reported itching were surveyed during 2008-2010 and 2012: 60 (30%) had body lice, 10 (4.9%)had head lice, and 6 (3.0%) had both. B. quintana was detected in 10 (15.9%) of 63 body lice pools and in 6 (37.5%)of 16 head lice pools. Variables significantly associated(p<0.05) with having body lice in this homeless population included male sex, African-American ethnicity, and sleeping outdoors. Our study findings suggest that specific segments of the homeless population would benefit from information on preventing body lice infestations and louse borne diseases.
Assuntos
Infecções por Bartonella/epidemiologia , Pessoas Mal Alojadas , Infestações por Piolhos/parasitologia , Adulto , Idoso , Feminino , Humanos , Infestações por Piolhos/epidemiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , São Francisco/epidemiologia , Adulto JovemRESUMO
Seasonal activity patterns of questing western black-legged ticks, Ixodes pacificus were investigated in northwestern California. Adult I. pacificus became active in the fall (late October/early November) and their appearance was associated with the first rain of the season. Following a peak in January, the abundance of adult ticks declined such that they were rare or absent by June/July. The nymphal tick activity season occurred from January through October, and larval activity occurred from April to June, but sometimes extended into October. Thus, potentially infectious ticks (nymphs and adults) present a year-round risk of Lyme disease transmission in northwestern California. The seasonality of Lyme disease cases in humans, based on the onset of erythema migrans, mirrored tick activity patterns and was year-round in cases infected in California. Peak incidence in humans occurs from May through July, and indicates that most disease transmission is from nymphal ticks. This study demonstrates that tick activity patterns are more extended than previously recognized in northwestern California.
Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/fisiologia , Glossite Migratória Benigna/epidemiologia , Ixodes/microbiologia , Doença de Lyme/epidemiologia , Animais , California/epidemiologia , Feminino , Humanos , Larva , Ninfa , Estações do AnoRESUMO
Risk of exposure to nymphal Ixodes pacificus Cooley and Kohls ticks was investigated at 7 picnic areas in Tilden Regional Park, a heavily used recreation area of over 2000 acres in northwestern California, east of San Francisco Bay. Wooden picnic tables, tree trunks, logs, leaf litter, surrounding vegetation, and rock walls were checked for ticks using standard 1-m(2) flannel tick flags at biweekly intervals from March to August 2008. Results indicate that nymphal I. pacificus were commonly found on wooden picnic tables and other wooden materials, such as tree trunks and logs, at an equal proportion to those found in leaf litter. Nymphal I. pacificus in picnic areas peaked in April, with a secondary peak in early June. Five of 170 (2.9%) nymphal I. pacificus collected at picnic sites were positive for Borrelia spirochetes, of which 3 (1.8%) were identified as B. burgdorferi sensu stricto using molecular techniques. In addition, a nymphal I. auritulus collected from a rock wall in a picnic area tested positive for a mixture of B. burgdorferi and B. bissettii; this tick species feeds exclusively on birds. This study indicates a moderate risk of acquiring a nymphal tick at Tilden Park picnic areas, but due to the low B. burgdorferi infection prevalence, the risk of acquiring Lyme disease appears to be low.